Two Scales

If a b c \overline{abc}\,^\circ Celsius is c a b \overline{cab}\,^\circ Fahrenheit, then what is a + b + c ? a + b + c?


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 30, 2018

a b c C = c a b F \overline{abc}\ ^\circ \text C = \overline{cab}\ ^\circ \text F ( 100 a + 10 b + c ) × 9 5 + 32 = 100 c + 10 a + b \implies {\color{#3D99F6}(100a+10b+c)\times \dfrac 95} + 32 = 100c+10a+b . Since the RHS is an integer, the LHS must also be an integer. Then ( 100 a + 10 b + c ) × 9 5 \color{#3D99F6}(100a+10b+c)\times \dfrac 95 must be an integer and ( 100 a + 10 b + c ) \color{#3D99F6}(100a+10b+c) is divisible by 5 hence c = 0 c=0 or c = 5 c=5 .

When c = 0 c=0 ,

( 100 a + 10 b ) × 9 5 + 32 = 10 a + b 180 a + 18 b + 32 = 10 a + b 170 a + 17 b = 32 a , b < 0 No solution. \begin{aligned} (100a+10b)\times \frac 95 + 32 & = 10a+b \\ 180a + 18b + 32 & = 10a+b \\ 170a + 17b & = -32 \\ \implies \color{#D61F06} a, b & \color{#D61F06}< 0 & \small \color{#D61F06} \text{No solution.} \end{aligned}

When c = 5 c=5 ,

( 100 a + 10 b + 5 ) × 9 5 + 32 = 500 + 10 a + b 180 a + 18 b + 9 + 32 = 500 + 10 a + b 170 a + 17 b = 459 Divide both sides by 17 10 a + b = 27 a = 2 b = 7 \begin{aligned} (100a+10b + 5)\times \frac 95 + 32 & = 500 + 10a + b \\ 180a + 18b + 9 + 32 & = 500+10a+b \\ 170a + 17b & = 459 & \small \color{#3D99F6} \text{Divide both sides by }17 \\ 10a + b & = 27 \\ \implies a & = 2 \\ b & = 7 \end{aligned}

Therefore, a + b + c = 2 + 7 + 5 = 14 a+b+c = 2+7+5 = \boxed{14} .

Giorgos K.
May 3, 2018

here are two ways to solve this using M a t h e m a t i c a Mathematica

a) using conversion formula
Select[Range[100,999],Floor[1.8*#+32]==FromDigits[IntegerDigits[#][[{3,1,2}]]]&]

b) using built-ins
Select[Range[100,999],#&@@UnitConvert[Quantity[#,"DegreesCelsius"],"DegreesFahrenheit"]==FromDigits[IntegerDigits[#][[{3,1,2}]]]&]

both return 275 275

Rab Gani
May 9, 2018

Use the conversion :(100a+10b+c) . 9/5 + 32 = 100c+10a+b,then 170a+17b – 98.2c + 32 = 0, So c=5 10a + b = 27, b=27 – 10a, a=2,b=7, 275

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...