Two Semicircles in a Triangle

Geometry Level 5

C A B \triangle CAB is a right triangle with two inscribed semicircles. Its base is 5 and its height is x x . Find the value of x x which maximizes the ratio of the combined area of the semicircles to the area of the triangle.


The answer is 1.997385721460819.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 15, 2020

Let the radii of the large and small semicircles be R R and r r respectively, and A = θ = tan 1 x 5 \angle A = \theta = \tan^{-1} \dfrac x5 . Then

R + R csc θ = 5 R = 5 csc θ + 1 = x ( 25 + x 2 x ) 5 R + R \csc \theta = 5 \implies R = \frac 5{\csc \theta + 1} = \frac {x(\sqrt{25+x^2}-x)}5

From similar triangles,

R r = r csc θ + r + R r csc θ R = r + r sin θ + R sin θ r = 1 sin θ 1 + sin θ R = x ( 25 + x 2 x ) 3 125 \begin{aligned} \frac Rr & = \frac {r\csc \theta + r + R}{r\csc \theta} \\ R & = r + r \sin \theta + R\sin \theta \\ \implies r & = \frac {1-\sin \theta}{1+\sin \theta} \cdot R = \frac {x(\sqrt{25+x^2}-x)^3}{125} \end{aligned}

Then the ratio of the two semicircles and the triangle ρ = π ( R 2 + r 2 ) / 2 5 x / 2 \rho = \dfrac {\pi(R^2+r^2)/2}{5x/2} , and

5 ρ π = x ( 25 + x 2 x ) 2 25 + x ( 25 + x 2 x ) 6 15625 78125 π ρ = 625 x ( 25 + x 2 x ) 2 + x ( 25 + x 2 x ) 6 78125 π d ρ d x = 625 ( 25 + x 2 2 x ) ( 25 + x 2 x ) 2 25 + x 2 + ( 25 + x 2 6 x ) ( 25 + x 2 x ) 6 25 + x 2 \begin{aligned} \frac {5\rho}\pi & = \frac {x(\sqrt{25+x^2} - x)^2}{25} + \frac {x(\sqrt{25+x^2}-x)^6}{15625} \\ \frac {78125}\pi \rho & = 625x(\sqrt{25+x^2} - x)^2 + x (\sqrt{25+x^2} - x)^6 \\ \frac {78125}\pi \cdot \frac {d\rho}{dx} & = \frac {625(\sqrt{25+x^2}-2x)(\sqrt{25+x^2}-x)^2}{\sqrt{25+x^2}} + \frac {(\sqrt{25+x^2}-6x)(\sqrt{25+x^2}-x)^6}{\sqrt{25+x^2}} \end{aligned}

Putting d ρ d x = 0 \dfrac {d\rho}{dx} =0 ,

( 25 + x 2 x ) 2 ( 625 ( 25 + x 2 2 x ) + ( 25 + x 2 6 x ) ( 25 + x 2 x ) 4 ) = 0 For 25 + x 2 x = 0 625 ( 25 + x 2 2 x ) + ( 25 + x 2 6 x ) ( 25 + x 2 x ) 4 = 0 x \begin{aligned} \blue{\left(\sqrt{25+x^2}-x \right)}^2 \left(625 \left(\sqrt{25+x^2}-2x\right) + \left(\sqrt{25+x^2} -6x\right)\left(\sqrt{25+x^2} -x\right)^4\right) & = 0 & \small \blue{\text{For } \sqrt{25+x^2}-x = 0} \\ \implies 625 \left(\sqrt{25+x^2}-2x\right) + \left(\sqrt{25+x^2} -6x\right)\left(\sqrt{25+x^2} -x\right)^4 & = 0 & \small \blue{\implies x \to \infty} \end{aligned}

Solving the equation, we get x 1.997 x \approx \boxed{1.997} .

Splendid solution again! If you isolate radicals to one side of the equation, then expand and simplify, you will get x 2 x^2 to be a root of the cubic equation 28 Y 3 + 400 Y 2 + 1875 Y 15625 = 0 28Y^3 + 400Y^2 + 1875Y - 15625=0 , or x = 5 1 42 ( 8 + 1567 + 168 87 3 + 1567 168 87 3 ) x = 5\cdot \sqrt{\frac1{42} \left( -8 + \sqrt[3]{1567 +168\sqrt{87}} + \sqrt[3]{1567 -168\sqrt{87}} \right) }

Pi Han Goh - 6 months, 4 weeks ago

Log in to reply

You are good.

Chew-Seong Cheong - 6 months, 4 weeks ago

Log in to reply

You are good-er.

Pi Han Goh - 6 months, 3 weeks ago
K T
Nov 16, 2020

Let the radii of the larger and smaller semicircles be r and αr, respectively. Because (loosely speaking) we could fill up the line CA with diametres of smaller and smaller semicircles, all touching AB, forming a geometric series, we see that 2 r ( 1 + α + α 2 + . . . ) = 5 2r(1+α+α^2+...)=5 and hence α = 1 2 5 r α=1-\frac{2}{5}r

The two semicircles now have a combined area of A s e m i c i r c l e s = 1 2 π r 2 ( 1 + α 2 ) = 1 2 π r 2 ( 1 + 1 4 5 r + 4 25 r 2 ) A_{semicircles} = \frac{1}{2}πr^2(1+α^2)=\frac{1}{2}πr^2(1+1-\frac{4}{5}r+\frac{4}{25}r^2) Defining t = r / 5 t=r/5 this rewrites a bit cleaner as A s e m i c i r c l e s = 25 π t 2 ( 1 2 t + 2 t 2 ) A_{semicircles} = 25πt^2(1-2t+2t^2)

Let the centre of the larger circle be D and let E be the point where the larger circle touches the line AD. The triangles ABC and ADE are similar, so that x : x 2 + 5 2 = r : ( 5 r ) x:\sqrt{x^2+5^2}=r:(5-r)

From this we can find x = r 1 2 r / 5 = 5 t 1 2 t x=\frac{r}{\sqrt{1-2r/5}}=\frac{5t}{\sqrt{1-2t}} .

The triangle has area A t r i a n g l e = 5 x / 2 = 25 t 2 1 2 t A_{triangle}=5x/2=\frac{25t}{2\sqrt{1-2t}}

We can express the Area ratio as a function of t:

R ( t ) = A s e m i c i r c l e s A t r i a n g l e = π t ( 1 2 t + 2 t 2 ) 2 1 2 t R(t)=\frac{A_{semicircles}}{A_{triangle}}=πt(1-2t+2t^2)2\sqrt{1-2t}

To find a stationary point, we set R ( t ) = 0 R'(t) = 0 which results in the polynomial 14 t 3 + 16 t 2 7 t + 1 = 0 -14t^3+16t^2-7t+1=0 , with real root t = 0.27059... t=0.27059... Plugging back in x = 5 t 1 2 t x=\frac{5t}{\sqrt{1-2t}} gives x = 1.9973... x=1.9973...

I like your approach. I hadn't seen it before. Thank you.

Fletcher Mattox - 6 months, 4 weeks ago
Vinod Kumar
Nov 17, 2020

Let radius of circles be a >b>0 and write the following relations

(1). 2a+b+√(b^2+c^2)=5.

(2). x=5*b/c

(3). b= (c a)/[c+2 √(a*b)]

(4). Maximize ratio w= (5x)/[π(a^2+b^2)] to find x=?

Use WolframAlpha to find x~2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...