Two Similar Fractions

Algebra Level 4

If ( p q ) ( r s ) ( q r ) ( s p ) = 2015 \dfrac{(p-q)(r-s)}{(q-r)(s-p)}=2015 , the value of ( p r ) ( q s ) ( p q ) ( r s ) \dfrac{(p-r)(q-s)}{(p-q)(r-s)} can be written as a b \frac{a}{b} where a a and b b are coprime integers. Find a + b a+b .


The answer is 4029.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hoo Zhi Yee
Feb 11, 2015

We have

2015 = ( p q ) ( r s ) ( q r ) ( s p ) = p r q r p s + q s q s r s p q + p r 2015=\frac{(p-q)(r-s)}{(q-r)(s-p)}=\frac{pr-qr-ps+qs}{qs-rs-pq+pr}

So,

2014 = p r q r p s + q s q s r s p q + p r 1 = p q + r s q r p s q s r s p q + p r = ( p r ) ( q s ) ( q r ) ( s p ) 2014=\frac{pr-qr-ps+qs}{qs-rs-pq+pr}-1=\frac{pq+rs-qr-ps}{qs-rs-pq+pr}=\frac{(p-r)(q-s)}{(q-r)(s-p)}

Therefore,

( p r ) ( q s ) ( p q ) ( r s ) = ( p r ) ( q s ) ( q r ) ( s p ) × ( q r ) ( s p ) ( p q ) ( r s ) = 2014 × 1 2015 = 2014 2015 \frac{(p-r)(q-s)}{(p-q)(r-s)}=\frac{(p-r)(q-s)}{(q-r)(s-p)} \times \frac{(q-r)(s-p)}{(p-q)(r-s)}=2014 \times \frac{1}{2015}=\frac{2014}{2015} .

Thus, a + b = 2014 + 2015 = 4029 a+b=2014+2015=\boxed{4029}

Good Solution..

B.s. Ashwin - 6 years, 3 months ago

Nice problem@ @Hoo Zhi Yee

Raven Herd - 6 years, 3 months ago

Log in to reply

Thank you! @raven herd

Hoo Zhi Yee - 6 years, 3 months ago

Nice problem, Zhi Yee!

Noel Lo - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...