Two-step Radical

Calculus Level 3

Evaluate the definite integral

0 1 x 1 x 4 d x . \int_0^1 x \sqrt{1 - x^4} \, dx.

1 4 \frac{1}{4} π 8 \frac{\pi}{8} π 4 \frac{\pi}{4} 2 2 π 8 \frac{\sqrt{2}}{2} - \frac{\pi}{8} 2 8 + 1 4 \frac{\sqrt{2}}{8} + \frac{1}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Henry Maltby
Jun 10, 2016

Since we know how to integrate 1 u 2 \sqrt{1-u^2} using a trigonometric substitution , we can use the substitution u = x 2 u = x^2 (and d u = 2 x d x du = 2x\,dx ) in order to simplify the integral:

0 1 x 1 x 4 d x = 0 1 1 2 1 ( x 2 ) 2 2 x d x = 0 1 1 2 1 u 2 d u . \int_0^1 x \sqrt{1 - x^4} \, dx = \int_0^1 \tfrac{1}{2} \sqrt{1-(x^2)^2} \cdot 2x \, dx = \int_0^1 \tfrac{1}{2} \sqrt{1 - u^2}\, du.

Now, we can use the trigonometric substitution u = sin θ u = \sin\theta (and d u = cos θ d θ du = \cos\theta \, d\theta ) to obtain:

0 1 1 2 1 u 2 d u = 0 π / 2 1 2 1 sin 2 θ cos θ d θ = 0 π / 2 1 2 cos 2 θ d θ . \int_0^1 \tfrac{1}{2} \sqrt{1 - u^2}\, du = \int_0^{\pi/2} \tfrac{1}{2} \sqrt{1 - \sin^2\theta} \cos\theta \, d\theta = \int_0^{\pi/2} \tfrac{1}{2} \cos^2\theta \, d\theta.

Finally, using the half-angle identity cos 2 θ = 1 + cos ( 2 θ ) 2 \cos^2\theta = \tfrac{1 + \cos(2\theta)}{2} , the integral evaluates to:

0 π / 2 1 2 cos 2 θ d θ = 0 π / 2 1 4 + cos ( 2 θ ) 4 d θ = [ x 4 + sin ( 2 θ ) 8 ] 0 π / 2 = π 8 . \int_0^{\pi/2} \tfrac{1}{2} \cos^2\theta \, d\theta = \int_0^{\pi/2} \frac{1}{4} + \frac{\cos(2\theta)}{4} \, d\theta = \left[ \frac{x}{4} + \frac{\sin(2\theta)}{8} \right]_0^{\pi/2} = \boxed{\frac{\pi}{8}.}

Chew-Seong Cheong
Jun 11, 2016

I = 0 1 x 1 x 4 d x Let u = x 2 d u = 2 x d x = 1 2 0 1 1 u 2 d u = 1 2 0 1 u 0 ( 1 u 2 ) 1 2 d u = 1 4 B ( 1 2 , 3 2 ) B ( m , n ) is beta function = Γ ( 1 2 ) Γ ( 3 2 ) 4 Γ ( 2 ) Γ ( n ) is gamma function = 1 2 ( Γ ( 1 2 ) ) 2 4 1 ! = ( π ) 2 8 = π 8 \begin{aligned} I & = \int_0^1 x\sqrt{1-\color{#3D99F6}{x^4}} dx \quad \quad \small \color{#3D99F6}{\text{Let }u = x^2 \implies du = 2x \ dx} \\ & = \frac12 \int_0^1 \sqrt{1-u^2} du \\ & = \frac12 \int_0^1 u^0 (1-u^2)^\frac12 du \\ & = \frac14\color{#3D99F6}{B \left(\frac12, \frac32 \right)} \quad \quad \small \color{#3D99F6}{B(m,n) \text{ is beta function}} \\ & = \frac{\color{#3D99F6}{\Gamma \left(\frac12 \right) \Gamma \left(\frac32 \right)}}{4\color{#3D99F6}{\Gamma \left( 2 \right)}} \quad \quad \small \color{#3D99F6}{\Gamma (n) \text{ is gamma function}} \\ & = \frac{\frac12 \left(\Gamma \left(\frac12 \right) \right)^2}{4\cdot 1!} \\ & = \frac{(\sqrt{\pi})^2}{8} = \boxed{\dfrac\pi 8} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...