Two Symmetric Equations

Algebra Level 2

If a , b a, b and c c are non-zero real numbers, that satisfy the equations a 2 + b 2 + c 2 = 1 a^2 + b^2 + c^2 = 1 and a ( 1 b + 1 c ) + b ( 1 c + 1 a ) + c ( 1 a + 1 b ) = 3 a\left(\frac {1}{b} + \frac {1}{c}\right) + b\left(\frac {1}{c} + \frac {1}{a}\right) + c\left( \frac {1}{a} + \frac {1}{b}\right) = -3 , how many possible values are there for a + b + c a + b + c ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

26 solutions

Mark Hennings
Nov 17, 2013

Simplifying the second expression: a ( 1 b + 1 c ) + b ( 1 c + 1 a ) + c ( 1 a + 1 b ) = 3 a 2 ( b + c ) + b 2 ( a + c ) + c 2 ( a + b ) = 3 a b c a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 + 3 a b c = 0 ( a + b + c ) ( a b + a c + b c ) = 0 1 2 ( a + b + c ) [ ( a + b + c ) 2 ( a 2 + b 2 + c 2 ) ] = 0 ( a + b + c ) ( ( a + b + c ) 2 1 ) = 0 \begin{array} {rcl} a\big(\tfrac{1}{b} + \tfrac{1}{c}\big) + b\big(\tfrac{1}{c} + \tfrac{1}{a}\big) + c\big(\tfrac{1}{a} + \tfrac{1}{b}\big) & = & -3 \\ a^2(b+c) + b^2(a + c) + c^2(a+b) & = & -3abc \\ a^2b + a^2c + ab^2 + b^2c + ac^2 + bc^2 + 3abc & = & 0 \\ (a+b+c)(ab+ac+bc) & = & 0 \\ \tfrac{1}{2}(a+b+c)\big[(a+b+c)^2 - (a^2+b^2+c^2)\big] & = & 0 \\ (a+b+c)((a+b+c)^2-1)& = & 0 \end{array} and hence a + b + c a+b+c can only take three values, namely 1 , 0 , 1 -1,0,1 . Putting a = 1 6 a=\tfrac{1}{\sqrt{6}} , b = 1 6 b=\tfrac{1}{\sqrt{6}} , c = 2 6 c = -\tfrac{2}{\sqrt{6}} shows that a + b + c = 0 a+b+c=0 is possible. Putting a = 1 3 a=-\tfrac13 , b = c = 2 3 b=c=\tfrac23 shows that a + b + c = 1 a+b+c=1 is possible. Putting a = 1 3 a=\tfrac13 , b = c = 2 3 b=c=-\tfrac23 shows that a + b + c = 1 a+b+c=-1 is also possible, Thus there are indeed three possible values for a + b + c a+b+c .

The equations are symmetric in a , b , c a,b,c , and so it is worthwhile investigating what the equations say in terms of the fundamental symmetric polynomials a + b + c a+b+c , a b + a c + b c ab+ac+bc and a b c abc . Once we start on that line, the solution method is evident.

May I ask why this problem is a 230 points problem.Its not at all tough.

Kishan k - 7 years, 6 months ago

Log in to reply

It was the only one out of this week's 12 I didn't get! (Although I didn't spend much time on it)

Matt McNabb - 7 years, 6 months ago

I did mistake in reading question , and ended up writing value of a + b + c a+b+c as 1 , 0 , 1 -1 , 0, 1 . :(

Akshay Sharma - 5 years, 4 months ago

i got a doubt... if we apply AM>=GM in the second given equation we will get that it must be greater than or equal to 6.. how can it be equal to -3..?

Nand Lal Mishra - 5 years ago

Log in to reply

Your argument using the AM/GM inequality assumes that a , b , c a,b,c are all positive. This need not (indeed, to get the value of 3 -3 it must not) be the case.

Mark Hennings - 5 years ago
Jianzhi Wang
May 20, 2014

We can write the second equation as a ( 1 a + 1 b + 1 c ) + b ( 1 a + 1 b + 1 c ) + c ( 1 a + 1 b + 1 c ) a \cdot (\frac {1}{a} + \frac {1}{b} + \frac {1}{c} ) + b \cdot (\frac {1}{a} + \frac {1}{b} + \frac {1}{c} ) + c \cdot (\frac {1}{a} + \frac {1}{b} + \frac {1}{c} ) =0 which will be reduced to ( a + b + c ) ( 1 a + 1 b + 1 c ) = 0 (a+b+c) \cdot (\frac {1}{a} + \frac {1}{b} + \frac {1}{c} ) = 0 .

Therefore, either ( a + b + c ) = 0 (a+b+c) = 0 or ( 1 a + 1 b + 1 c ) = 0 (\frac {1}{a} + \frac {1}{b} + \frac {1}{c} ) = 0 .

(1) One of the sets that satisfy the 2 equations when a + b + c = 0 a+b+c = 0 is 1 6 , 1 6 , 2 6 \frac {1}{\sqrt{6}}, \frac {1}{\sqrt{6}}, -\frac {2}{\sqrt{6}} . So a + b + c = 0 a+b+c = 0 is one solution.

(2) If ( 1 a + 1 b + 1 c ) = 0 (\frac {1}{a} + \frac {1}{b} + \frac {1}{c} ) = 0 , then b c + c a + a b a b c = 0 \frac {bc + ca + ab} {abc} = 0 . So b c + c a + a b bc + ca + ab = 0.

Now we look at ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 c a (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca . Since 2 a b + 2 b c + 2 c a 2ab + 2bc + 2ca = 0 and a 2 + b 2 + c 2 a^2 + b^2 + c^2 = 1, ( a + b + c ) 2 = 1 (a+b+c)^2 = 1 , a + b + c = 1 a+b+c = 1 or 1 -1 .

One set that satisfy the 2 equations when a + b + c = 1 a+b+c = -1 is 2 3 , 2 3 , 1 3 -\frac {2}{3}, -\frac {2}{3}, \frac {1}{3} One set that satisfy the 2 equations when a + b + c = 1 a+b+c = 1 is 2 3 , 2 3 , 1 3 \frac {2}{3}, \frac {2}{3}, -\frac {1}{3} So there are 2 more solutions.

In total, we have 3 solutions.

No other submitted solution provided actual solution sets. Remember that if you do not verify your solutions, you could end up proving that 0=1 .

Further note that we are restricted to non-zero reals, so ( 1 , 0 , 0 ) (1, 0, 0) is not a valid solution set to justify that a + b + c = 1 a+b+c=1 is possible.

Calvin Lin Staff - 7 years ago
Wei Liang Gan
May 20, 2014

From the equation, a ( 1 a + 1 b + 1 c ) + b ( 1 a + 1 b + 1 c ) + c ( 1 a + 1 b + 1 c ) = 0 a(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+b(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+c(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) = 0 Hence, ( a + b + c ) ( 1 a + 1 b + 1 c ) = 0 (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})=0

Case 1: a + b + c 0 a+b+c \not= 0

Therefore, 1 a + 1 b + 1 c = 0 \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0 ( a + b + c ) 2 ( a 2 + b 2 + c 2 ) = 2 a b + 2 b c + 2 a c (a+b+c)^2 - (a^2+b^2+c^2) = 2ab+2bc+2ac = 2 a b c ( 1 a + 1 b + 1 c ) = 0 = 2abc(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) = 0 a 2 + b 2 + c 2 = 1 ( a + b + c ) 2 = 1 a + b + c = 1 or 1 a^2+b^2+c^2=1 \Rightarrow (a+b+c)^2=1 \Rightarrow a+b+c = 1 \text{ or }-1

Case 2: a + b + c = 0 a+b+c = 0

Therefore, there are 3 possible values of a + b + c a+b+c which are 1 , 0 , 1 -1, 0, 1

Aditya Parson
Nov 17, 2013

Take the LCM(of the LHS) of the terms in the second equation:

a ( b + c b c ) + b ( a + c a c ) + c ( a + b a b ) a(\frac{b+c}{bc})+b(\frac{a+c}{ac})+c(\frac{a+b}{ab})

= a 2 ( b + c ) + b 2 ( a + c ) + c 2 ( a + b ) a b c =\frac{a^2(b+c)+b^2(a+c) + c^2(a+b)}{abc}

Now, group the terms in the numerator such that we can bring the first equation into play:

= a 2 b + c 2 b + a b 2 + a c 2 + c a 2 + c b 2 a b c = \frac{a^2b+c^2b + ab^2+ac^2+ ca^2+cb^2}{abc}

= b ( a 2 + c 2 ) + a ( b 2 + c 2 + c ( a 2 + b 2 ) a b c =\frac{b(a^2+c^2)+a(b^2+c^2+c(a^2+b^2)}{abc}

This is where we can use a 2 + b 2 + c 2 = 1 a^2+b^2+c^2=1 to simplify the expression obtained above.

b ( 1 b 2 ) + a ( 1 a 2 ) + c ( 1 c 2 ) a b c \frac{b(1-b^2)+a(1-a^2)+c(1-c^2)}{abc}

= ( a + b + c ) ( a 3 + b 3 + c 3 ) a b c =\frac{(a+b+c)-(a^3+b^3+c^3)}{abc}

The above expression equals 3 -3 , and we have:

( a + b + c ) ( a 3 + b 3 + c 3 ) = 3 a b c (a+b+c)-(a^3+b^3+c^3)=-3abc

( a + b + c ) ( a 3 + b 3 + c 3 3 a b c ) = 0 \Rightarrow (a+b+c)-(a^3+b^3+c^3-3abc)=0

Use the well known factorization, a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

Take ( a + b + c ) (a+b+c) as the common factor:

( a + b + c ) ( 1 ( a 2 + b 2 + c 2 a b b c c a ) = 0 \Rightarrow (a+b+c)(1-(a^2+b^2+c^2-ab-bc-ca)=0

( a + b + c ) ( a b + b c + b a ) = 0 \Rightarrow (a+b+c)(ab+bc+ba)=0

If a b + b c + c a = 0 ab+bc+ca=0

a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + a c + b c ) = 1 a^2+b^2+c^2=(a+b+c)^2-2(ab+ac+bc)=1

( a + b + c ) 2 = 1 \Rightarrow (a+b+c)^2=1

Hence, we conclude that there are 3 \boxed{3} possible solutions for a + b + c a+b+c , namely : 0 , 1 , 1 0,1,-1

I have a small doubt,if we are given the values of a 2 + b 2 + c 2 a^{2}+b^{2}+c^{2} and a + b + c a+b+c where a , b , c a,b,c are reals then, how can we find the range of a b c abc ?

Kishan k - 7 years, 6 months ago

Log in to reply

Since we are given a 2 + b 2 + c 2 = 1 a^2+b^2+c^2=1 , that is where a b c abc loses it's relevance to the question(when you substitute this into the second equation that is). The solutions don't depend on what a b c abc is, rather the value of a b c abc depends on the solutions. I might be wrong, though.

Aditya Parson - 7 years, 6 months ago
Yang Conan Teh
May 20, 2014

We know that a b + a c + b a + b c + c a + c b + a a + b b + c c = 0 \dfrac{a}{b}+ \dfrac{a}{c}+ \dfrac{b}{a}+ \dfrac{b}{c}+ \dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{a}+\dfrac{b}{b}+\dfrac{c}{c}=0 or ( a + b + c ) ( 1 a + 1 b + 1 c ) = 0. (a+b+c)(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})=0.

If 1 a + 1 b + 1 c = 0 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0 then a b + b c + c a a b c = a b + b c + c a = 0 \dfrac{ab+bc+ca}{abc}=ab+bc+ca=0 . Then ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) = a 2 + b 2 + c 2 = 1. (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)=a^{2}+b^{2}+c^{2}=1. Therefore a + b + c = ± 1 a+b+c=\pm 1 . On the other hand we may have a + b + c = 0 a+b+c=0 as well.

So a + b + c = 0 , 1 , 1. a+b+c =0, -1, 1. It can be seen that: there are a , b , c a, b, c such that a + b + c = 0 , 1 a+b+c =0, -1 or 1 1 and a 2 + b 2 + c 2 = 1 a^{2}+b^{2}+c^{2}=1 and these solutions work.

Tan Kin Aun
May 20, 2014

The relation is equivalent to: a b + a c + b a + b c + c a + c b + a a + b b + c c = 0 \dfrac{a}{b}+ \dfrac{a}{c}+ \dfrac{b}{a}+ \dfrac{b}{c}+ \dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{a}+\dfrac{b}{b}+\dfrac{c}{c}=0 or ( a + b + c ) ( 1 a + 1 b + 1 c ) = 0. (a+b+c)(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})=0. If ( a + b + c ) = 0 (a+b+c)=0 we get one solution. If 1 a + 1 b + 1 c = 0 \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0 then a b + b c + c a a b c = a b + b c + c a = 0 \dfrac{ab+bc+ca}{abc}=ab+bc+ca=0 . Then ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) = a 2 + b 2 + c 2 = 1 ( a + b + c ) = ± 1 (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)=a^{2}+b^{2}+c^{2}=1\Rightarrow (a+b+c)=\pm 1 .

So a + b + c a+b+c =0, -1, 1.) It can be seen that these solutions work and exists a , b , c a,b,c such that a + b + c a+b+c =0, -1 or 1 and a 2 + b 2 + c 2 = 1 a^{2}+b^{2}+c^{2}=1

Brian Reinhart
May 20, 2014

Note that a ( 1 b + 1 c ) = a ( 1 a + 1 b + 1 c ) 1 a(\frac{1}{b}+\frac{1}{c})=a(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})-1 , so a ( 1 b + 1 c ) + b ( 1 a + 1 c ) + c ( 1 a + 1 b ) = a ( 1 a + 1 b + 1 c ) + a(\frac{1}{b}+\frac{1}{c})+b(\frac{1}{a}+\frac{1}{c})+c(\frac{1}{a}+\frac{1}{b})=a(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+ b ( 1 a + 1 b + 1 c ) + c ( 1 a + 1 b + 1 c ) 3 = ( a + b + c ) ( 1 a + 1 b + 1 c ) 3 b(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+c(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})-3=(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})-3 = 3 =-3 , and adding three to both sides gives ( a + b + c ) ( 1 a + 1 b + 1 c ) = 0 (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})=0 . By the zero-product property, either a + b + c = 0 a+b+c=0 or 1 a + 1 b + 1 c = 0 \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0 . Thus a + b + c = 0 a+b+c=0 is one solution for a + b + c a+b+c . Otherwise, 1 a + 1 b + 1 c = b c a b c + a c a b c + a b a b c = a b + a c + b c a b c = 0 \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{ab+ac+bc}{abc}=0 . Since a, b, and c are non-zero, this is not undefined, and we can multiply by a b c abc to get a b + a c + b c = 0 ab+ac+bc=0 . Now, note that ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + a c + b c ) (a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc) Since a 2 + b 2 + c 2 = 1 a^2+b^2+c^2=1 , and a b + a c + b c = 0 ab+ac+bc=0 , ( a + b + c ) 2 = 1 + 2 ( 0 ) = 1 (a+b+c)^2=1+2(0)=1 , so a + b + c = 1 o r 1 a+b+c=1 or -1 . Thus there are three possibilities for a + b + c a+b+c : -1, 0, and 1

Ang Yu Jian
May 20, 2014

Refer to a^2+b^2+c^2=1 as eqn 1 and a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)=−3 as eqn 2.

we see that by adding the terms a/a=1 b/b=1 and c/c=1 to eqn 2, we can factorise it into the form (a+b+c)*(1/a+1/b+1/c)=0

This then gives us our first solution, a+b+c=0

we now consider the second case, where the reciprocals sum up to 0 and a+b+c \neq 0

call 1/a+1/b+1/c=0 eqn 3. We now multiple eqn 3 by abc, to get

ab+bc+ac=0, which we call eqn 4.

adding eqn 4 twice to eqn 1, we find that

a^2+b^2+c^2+2ab+2bc+2ac=1 which can be factorized into (a+b+c)^2=1

This then gives us our other 2 answers, a+b+c=1 and a+b+c=-1

Leon Fone
May 20, 2014

In the second equation, get rid the denominator and we get: a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 = 3 a b c a^2b + a^2c + ab^2 + b^2c + ac^2 + bc^2 = -3abc ; a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 + 3 a b c = 0 a^2b + a^2c + ab^2 + b^2c + ac^2 + bc^2 +3abc = 0 ; ( a 2 b + a b 2 + a b c ) + ( a c 2 + a 2 c + a b c ) + ( b c 2 + b 2 c + a b c ) = 0 (a^2b+ab^2 + abc) + (ac^2 + a^2c + abc) + (bc^2 + b^2c +abc)=0 ; a b ( a + b + c ) + a c ( a + b + c ) + b c ( a + b + c ) = 0 ab(a+b+c) + ac(a+b+c) + bc(a+b+c) = 0 ; ( a b + b c + a c ) ( a + b + c ) = 0 (ab+bc+ac)(a+b+c)=0

Then we get: a + b + c = 0 a+b+c = 0 or a b + b c + a c = 0 ab+bc+ac=0

Now consider case if a b + b c + a c = 0 ab+bc+ac = 0 , then from the first equation , it is equivalent to: ( a + b + c ) 2 2 ( a b + b c + a c ) = 1 (a+b+c)^2 - 2(ab+bc+ac) = 1 , because a b + b c + a c = 0 ab+bc+ac = 0 , so ( a + b + c ) 2 = 1 (a+b+c)^2 = 1

Then we get: a + b + c = 1 a+b+c = 1 or a + b + c = 1 a+b+c = -1

The conclusion is: the number of possible values for a + b + c a+b+c is 3 \underline{3} , which is 1 , 0 , 1 -1, 0 , 1

Aneesh Raghavan
May 20, 2014

consider the second expression,

it can be simplified as a^2(b+c)+b^2(a+c)+c^2(a+b)=-3abc;

which can be further simplified as;

(a+b+c)*(ab+bc+ac)=0;

ab+bc+ac=((a+b+c)^2-(a^2+b^2+c^2))/2;

considering a+b+c=x; x (x^2-1)/2=0; =>x (x^2-1)=0; x=0;x=1;x=-1; hence a+b+c can take three values

Michael Sheng
May 20, 2014

Multiplying by a b c , a ( 1 b + 1 c ) + b ( 1 a + 1 c ) + c ( 1 a + 1 b ) = 3 a 2 ( b + c ) + b 2 ( a + c ) + c 2 ( a + b ) = 3 a b c Expanding, we get a 2 b + a 2 c + b 2 a + b 2 c + c 2 a + c 2 b + 3 a b c = 0 ( a + b + c ) ( a b + b c + a c ) = 0. We see that a + b + c = 0 is a solution. For ( a b + b c + a c ) = 0 , Notice that ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 a c . Using our result and a 2 + b 2 + c 2 = 1 , We get ( a + b + c ) 2 = 1 + 2 ( a b + b c + a c ) = 1 a + b + c = ± 1. Therefore, there are 3 possible values -1,0,1 of a + b + c . \text{Multiplying by }abc,\\ a(\frac{1}{b}+\frac{1}{c})+b(\frac{1}{a}+\frac{1}{c})+c(\frac{ 1}{a}+\frac{1}{b})=-3\\ \Rightarrow a^2(b+c)+b^2(a+c)+c^2(a+b)=-3abc\\ \text{Expanding, we get}\\ a^2b+a^2c+b^2a+b^2c+c^2a+c^2b+3abc=0\\ \Rightarrow (a+b+c)(ab+bc+ac)=0.\\ \text{We see that } a+b+c=0 \text{ is a solution.}\\ \text{For }(ab+bc+ac)=0,\\ \text{Notice that }(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac.\\ \text{Using our result and } a^2+b^2+c^2=1 \text{, We get } \\ (a+b+c)^2=1+2(ab+bc+ac)=1\\ \Rightarrow a+b+c=\pm1.\\ \text{Therefore, there are } 3 \text{ possible values {-1,0,1} of } a+b+c.

-3=a(b+c/bc)+b(a+c/ac)+c(a+b/ab)=ab+ac/bc+ab+bc/ac+ac+bc/ab -3={(a^2 b)+(a^2 c)+(a b^2)+(b^2 c)+(a c^2)+(b c^2)}/abc -3={b(a^2+c^2)+c(a^2+b^2)+a(b^2+c^2)}/abc -3={b(1-b^2)+c(1-c^2)+a(1-a^2)}/abc. -3abc=(a^3+b^3+c^3+a+b+c) a+b+c=(a+b+c)(a^2+b^2+c^2-ab-bc-ca) a^2+b^2+c^2=ab+bc+ca\ a=b=c. by solving according to this we can find 3 possible values for a,b,c.

a/b+b/a+c/a+a/c+b/c+c/b=-3 [a^2+b^2]/ab + [b^2+c^2]/bc +[c^2+a^2]/ac=-3 [1-c^2]/ab +[1-b^2]/ac +[1-a^2]/bc=-3 {a+b+c-[a^3+b^3+c^3]}/abc=-3 a+b+c=3abc+a^3+b^3+c^3 (a+b+c)=(a+b+c)(a^2+b^2+c^2+ab+bc+ca) (a+b+c)(ab+bc+ca)=0 [a^2+b^2+c^2=1] a+b+c=0 or ab+bc+ca=o i.e, (a+b+c)^2=a^2+b^2+c^2 (a+b+c)^2=1 a+b+c=1 or -1 i.e, a+b+c=0 or 1 or-1 3 solutions

Guangxuan Zhang
May 20, 2014

a(1/b+1/c)+b(1/a+1/c)+c(1/b+1/a)=-3 a((b+c)/bc)+b((a+c)/ac)+c((a+b)/ab)=-3 [a^2(b+c)+b^2(a+c)+c^2(a+b)]/abc=-3 a^2b+a^2c+b^2a+b^2c+c^2a+c^2b=-3abc Adding a^3+b^3+c^3 to both sides, we get: a^3+b^3+c^3+a^2b+a^2c+b^2a+b^2c+c^2a+c^2b=a^3+b^3+c^3-3abc Factorising, (a^2+b^2+c^2)(a+b+c)=(a+b+c)(a^2+b^2+c^2-ab-ac-bc) Then if a+b+c=0, we are done. Otherwise, we get ab+bc+ca=0 a^2+b^2+c^2+2(ab+bc+ca)=1 (a+b+c)^2=1 so (a+b+c)=1 or -1 Thus, a+b+c can only be -1,0,1 when a,b,c are real numbers. Then we construct cases to show that it is possible to have a+b+c=-1,0 and 1.

Akbar Gumbira
Nov 17, 2013

First, let the LHS of the equation expands itself: a ( 1 b + 1 c ) + b ( 1 c + 1 a ) + c ( 1 a + 1 b ) = ( a + b + c ) ( 1 a + 1 b + 1 c ) ( a a + b b + c c ) = ( a + b + c ) ( 1 a + 1 b + 1 c ) 3 a (\frac{1}{b} + \frac{1}{c}) + b (\frac{1}{c} + \frac{1}{a}) + c (\frac{1}{a} + \frac{1}{b}) = (a+b+c) (\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) - (\frac{a}{a} + \frac{b}{b} + \frac{c}{c}) = (a+b+c) (\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) - 3

So, with the value from the RHS, the problem now becomes:

( a + b + c ) ( 1 a + 1 b + 1 c ) = 0 (a+b+c) (\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) = 0

From above equation, the solution is either:

  1. a + b + c = 0 a + b + c = 0 or

  2. 1 a + 1 b + 1 c = 0 \frac{1}{a} + \frac{1}{b} + \frac{1}{c}=0

From 1 we get 1 solution.

From 2:

1 a + 1 b + 1 c = a b + a c + b c a b c = 0 \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{ab+ac+bc}{abc}= 0

As a , b , c a, b, c are non zero real numbers, then a b c 0 abc \neq 0 , so a b + a c + b c ab+ac+bc must be 0 0

Because ( a + b + c ) 2 = a 2 + b 2 + c 2 2 ( a b + a c + b c ) a+b+c)^2 = a^2 + b^2+c^2 - 2(ab+ac+bc) , then ( a + b + c ) 2 = 1 a+b+c)^2 = 1 From this, we get a + b + c = ± 1 a+b+c = \pm 1

So there are 3 \boxed{3} possible values of a + b + c a+b+c that hold that equation.

Taehyung Kim
Nov 20, 2013

At first, the two given equations will seem completely unrelated but when we expand the second, we get a b + a c + b c + b a + c a + b c = 3. \frac ab + \frac ac + \frac bc + \frac ba + \frac ca + \frac bc = - 3. If we try to factor this, we know that this will have a factor with a , b , c a,b,c in the numerator and a factor with a , b , c a,b,c in the denominator. This seems to look like ( a + b + c ) ( 1 a + 1 b + 1 c ) = 3 + a b + a c + b c + b a + c a + b c = 3 3 = 0. (a+b+c)(\frac 1a + \frac1b + \frac1c) = 3 + \frac ab + \frac ac + \frac bc + \frac ba + \frac ca + \frac bc = 3 - 3 = 0. So we have two cases: a + b + c = 0 a+b+c = 0 or 1 a + 1 b + 1 c = 0 \frac 1a + \frac 1b + \frac1c= 0 . The first case gives us one of the solution. If we were to use the second case, we see 1 a + 1 b + 1 c = a b + b c + a c a b c = 0 \frac 1a + \frac 1b + \frac 1c = \frac{ab + bc + ac}{abc} = 0 so a b + b c + a c = 0. ab + bc + ac = 0. Now we use the fact that ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + a c ) (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac) to get ( a + b + c ) 2 = 1 + 2 ( 0 ) = 1. (a+b+c)^2 = 1 + 2(0) = 1. Thus we have two other solutions a + b + c = 1 a+b+c =1 and 1 -1 . This gives us a total of 3 3 solutions.

Oops I made a mistake. We have (a+b+c)(1/a+1/b+1/c) = 0 not 3.

Taehyung Kim - 7 years, 6 months ago

Log in to reply

Can you explain why these three values are indeed possible?

Jorge Tipe - 7 years, 6 months ago

Another mistake is in the third line where b / c b/c supposed to be c / b c/b

By the way, how did you related ( a + b + c ) ( 1 / a + 1 / b + 1 / c ) (a+b+c)(1/a+1/b+1/c) to this problem? I mean, just thought of this like out of nowhere? I always failed to do that.

Christopher Boo - 7 years, 6 months ago

Log in to reply

Actually this manipulation comes up quite often (also, I saw this in AoPS Intermediate Algebra a few days ago).

Taehyung Kim - 7 years, 6 months ago

a ( 1 b + 1 c ) + b ( 1 c + 1 a ) + c ( 1 a + 1 b ) = 3 a \left( \frac{1}{b} + \frac{1}{c} \right) + b \left( \frac{1}{c} + \frac{1}{a} \right) + c \left( \frac{1}{a} + \frac{1}{b} \right) = -3

Multiply both side with a b c abc then we will get:

( a + b + c ) ( a b + b c + c a ) = 0 (a + b + c)(ab + bc + ca) = 0

First Case: \text{First Case:}

a + b + c = 0 a + b + c = 0

Second Case: \text{Second Case:}

( a + b + c ) 2 2 ( a b + b c + c a ) = 1 (a + b + c)^2 - 2(ab + bc + ca) = 1

a + b + c = ± 1 a + b + c = ± 1

Hence, there are 3 \boxed{3} possible values for a + b + c . a + b + c.

Can you explain why these three values are indeed possible?

Jorge Tipe - 7 years, 6 months ago

The second equation is a(1/b + 1/c) + b(1/c + 1/a) + c(1/a + 1/b)= -3

Or, a(b+c)/bc + b(c+a)/ca + c(a+b)/ab= -3

Or, a^2(b+c) + b^2(c+a) + c^2(a+b) + 3abc = 0 [multiplying both sides by abc and using the fact that a,b,c are non zero numbers]

Or, (a+b)(b+c)(c+a) - 2abc + 3abc = 0 [since (a+b)(b+c)(c+a) = a^2(b+c) + b^2(c+a) + c^2(a+b) + 2abc]

Or, (a+b)(b+c)(c+a) + abc= 0

Now let p= a+b+c.

Then the equation becomes (p-a)(p-b)(p-c) + abc= 0

Or, p^3 - (a^2 + b^2 + c^2)p + (ab+bc+ca)p - abc + abc = 0 [when we expand (p-a)(p-b)(p-c) we see that (p-a)(p-b)(p-c) = p^3 - (a^2 + b^2 + c^2)p + (ab+bc+ca)p]

Or, p^3 - p + (ab+bc+ca)p = 0 [since a^2 + b^2 + c^2 =1]

Now note that (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca) Or, (ab+bc+ca) = (p^2 - 1)/2

Putting this value in the equation...

p^3 - p +(p^2 - 1)p/2= 0

Or, 3p^3 - p = 0

Or, p(3p^2 - 1)= 0

So, the possible values of p are...

i) p= 0 ii) p= sqrt(1/3) iii) p=-sqrt(1/3) [since sqrt(1/3) and -sqrt(1/3) are roots to the equation 3p^2 - 1 = 0]

This implies that there are 3 possible values of a+b+c.

Sky Cao
May 20, 2014

The first thing to do is notice that:

a ( 1 b + 1 c ) + b ( 1 c + 1 a ) + c ( 1 a + 1 b ) = a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 a b c a\left(\frac{1}{b} + \frac{1}{c}\right) + b\left(\frac{1}{c} + \frac{1}{a}\right) + c\left(\frac{1}{a} + \frac{1}{b}\right) = \frac{a^2b+a^2c + ab^2+b^2c + ac^2+bc^2}{abc}

This implies:

a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 + 3 a b c = 0 a^2b + a^2 c + ab^2 + b^2c + ac^2 + bc^2 + 3abc = 0

This expression can be factored into:

( a + b + c ) ( a b + b c + c a ) = 0 (a+b+c)(ab + bc + ca) = 0

Now if we look at:

( a + b + c ) 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) + 2 ( a + b + c ) ( a b + b c + c a ) (a+b+c)^3 = (a+b+c)(a^2 + b^2 + c^2) + 2(a+b+c)(ab+bc+ca)

Since a 2 + b 2 + c 2 = 1 a^2 + b^2 + c^2 = 1 , this leads to:

( a + b + c ) 3 = a + b + c (a+b+c)^3 = a+b+c

Thus there are two cases to examine. Case 1: a + b + c = 0 a+b+c = 0 . This gives one possible value of a + b + c a+b+c . An example of a solution of this form is ( 1 2 , 1 2 , 0 ) (\frac{1}{\sqrt{2}} , -\frac{1}{\sqrt{2}}, 0) . Case 2: a + b + c 0 a+b+c \not= 0 . This implies:

( a + b + c ) 2 = 1 (a+b+c)^2 = 1

Which implies that a + b + c = ± 1 a+b+c = \pm 1 . Examples of solutions of this form are ( 1 , 0 , 0 ) (1,0,0) and ( 1 , 0 , 0 ) (-1,0,0) . Thus a + b + c a+b+c can only take on 3 values.

a2+b2+c2=1 , a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)=−3, (a+b+c)2=1+2(ab+bc+ca), (b+c)/a+(a+b)/c+(a+c)/b=-3, b2c+bc2+a2b+ab2+a2c+ac2=-3abc, (a+b+c)3=a+b+c+2(a2b+abc+a2c+ab2+b2c+bca+abc+c2b+c2a),(from above). (a+b+c)3=a+b+c+2(3abc+a2b+a2c+ab2+b2c+c2b+c2a), (a+b+c)3=a+b+c. so a+b+c has 3 roots

Jimmi Simpson
May 20, 2014

There are three possible values of a + b + c a+b+c : 1 1 for each dimension a a , b b , and c c .

we can find a=b=c by solvig this. by solving we get 3 possibilities for a+b+c

James Remo
Jan 26, 2014

Expanding the bracers and multiplying up by 3 a b c 3abc we obtain: a 2 ( b + c ) + b 2 ( a + c ) + c 2 ( a + b ) = 3 a b c a^2(b+c)+b^2(a+c)+c^2(a+b)=-3abc Adding a 3 + b 3 + c 3 a^3+b^3+c^3 to both sides and factorising the left-hand side, we get: a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 ) a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2) -> ( a + b + c ) ( a 2 + b 2 + c 2 ( a b + b c + a c ) ) = ( a + b + c ) ( a 2 + b 2 + c 2 ) (a+b+c)(a^2+b^2+c^2-(ab+bc+ac))=(a+b+c)(a^2+b^2+c^2) Subtracting and factorising, we get: ( a + b + c ) ( a b + b c + a c ) = 0 (a+b+c)(ab+bc+ac)=0 So either a + b + c = 0 a+b+c=0 , which is one value of a + b + c a+b+c , or a b + b c + a c = 0 ab+bc+ac=0 -> ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + a c ) (a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac) -> ( a + b + c ) 2 = 1 (a+b+c)^2=1 , so a + b + c = 1 a+b+c=1 or a + b + c = 1 a+b+c=-1 . So there are 3 \boxed{3} possible values of a + b + c a+b+c

Timothy Zhou
Nov 20, 2013

First of all, we want a+b+c to show up in the second equation. Rewrite the second equation as (a+c)/b+(a+b)/c+(b+c)/a = -3. Now we can manipulate by adding b/b, c/c, and a/a to the LHS, while simply adding 3 to the RHS. This yields (a+b+c)(1/a+1/b+1/c)=0. Now either a+b+c=0, or (1/a+1/b+1/c)=0, which implies ab+bc+ca=0 if we multiply both sides by abc.

Next, we wish to make use of the first equation. We want to get squared terms, so note that (a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca). If ab+bc+ca=0, we are left with (a+b+c)^2=1, or (a+b+c) = plus and minus 1.

So our possible values for a+b+c are: 0, +1, and -1. Thus there are 3 solutions.

Suwiwat Bunnag
Nov 19, 2013

I decide to try something very simple for me just take a symmetric polynomial a + b + c a+b+c , a b + b c + c a ab+bc+ca and a b c abc but it gets to far .... so I try another thing

the next idea that came to my head is I notice the -3 on the right size of the second equation and try to think of the left size whether I could complete each parentheses as 1 a + 1 b + 1 c \frac{1}{a} + \frac{1}{b} + \frac{1}{c} so I did it . I see that the second equation will become ( a + b + c ) ( 1 a + 1 b + 1 c ) = 0 (a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}) = 0

so ; a + b + c = 0 a+b+c = 0 or 1 a + 1 b + 1 c = 0 \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0

from the second case ... it would be a b + b c + c a = 0 ab+bc+ca = 0 since a , b , c a,b,c is not zero

from the first equation of the problem , we get ( a + b + c ) 2 2 ( a b + b c + c a ) = 1 (a+b+c)^{2} - 2(ab+bc+ca) = 1 ( a + b + c ) 2 = 1 (a+b+c)^{2} = 1 so a + b + c = 1 , 1 a+b+c = 1,-1

from all of which I explain my idea ... we get that the possible value of a + b + c = 0 , 1 , 1 a+b+c = 0,1,-1 . Therefore the number of possible values is 3

Huy Pham
Nov 18, 2013

a ( 1 b + 1 c ) + b ( 1 c + 1 a ) + c ( 1 a + 1 b ) = 3 a(\frac{1}{b}+\frac{1}{c})+b(\frac{1}{c}+\frac{1}{a})+c(\frac{1}{a}+\frac{1}{b})=-3 a 2 ( b + c ) + b 2 ( c + a ) + c 2 ( a + b ) + 3 a b c = ( a + b + c ) ( a b + b c + c a ) = ( a + b + c ) ( ( a + b + c ) 2 1 ) / 2 = 0 \Rightarrow a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc=(a+b+c)(ab+bc+ca)=(a+b+c)((a+b+c)^2-1)/2=0 a + b + c = 0 , 1 , 1 a+b+c=0,1,-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...