Two to Tango

Algebra Level 2

What is the value of S S if

S = 1 2 1 6 + 1 4 1 12 + 1 8 1 20 + 1 16 1 30 + 1 32 1 42 + S = \frac{1}{2} - \frac{1}{6} + \frac{1}{4} - \frac{1}{12} + \frac{1}{8} - \frac{1}{20} + \frac{1}{16} - \frac{1}{30} + \frac{1}{32} - \frac{1}{42} + \cdots


The answer is 0.50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Jun 28, 2017

Notice that

1 2 + 1 4 + 1 8 + 1 16 + 1 32 + = n = 1 ( 1 2 ) n \displaystyle \frac 12 + \frac 14 + \frac 18 + \frac{1}{16} + \frac{1}{32} + \cdots = \sum_{n \ = \ 1}^{\infty} \left( \frac 12 \right)^n

and

1 6 + 1 12 + 1 20 + 1 30 + 1 42 + = n = 1 1 ( n + 1 ) ( n + 2 ) \displaystyle \frac 16 + \frac {1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \cdots = \sum_{n \ = \ 1}^{\infty} \frac{1}{(n + 1)(n + 2)}

both converge. The first sum is a geometric series with r < 1 \displaystyle |r| < 1 and the second sum converges by direct comparison to n = 1 1 n 2 \displaystyle \sum_{n \ = \ 1}^{\infty} \frac{1}{n^2} .

Thus, we can apply linearity:

If n = 1 a n \displaystyle \sum_{n \ = \ 1}^{\infty} a_n and n = 1 b n \displaystyle \sum_{n \ = \ 1}^{\infty} b_n both converge, then n = 1 a n ± b n = n = 1 a n ± n = 1 b n \displaystyle \sum_{n \ = \ 1}^{\infty} a_n \pm b_n = \sum_{n \ = \ 1}^{\infty} a_n \pm \sum_{n \ = \ 1}^{\infty} b_n

Let S S be our desired sum. We have:

S = 1 2 1 6 + 1 4 1 12 + 1 8 1 20 + = ( 1 2 1 6 ) + ( 1 4 1 12 ) + ( 1 8 1 20 ) + = n = 1 [ ( 1 2 ) n 1 ( n + 1 ) ( n + 2 ) ] = n = 1 ( 1 2 ) n n = 1 1 ( n + 1 ) ( n + 2 ) \displaystyle \begin{aligned} S & = \frac 12 - \frac 16 + \frac 14 - \frac{1}{12} + \frac 18 - \frac{1}{20} + \cdots \\ & = \left(\frac 12 - \frac 16\right) + \left(\frac 14 - \frac{1}{12}\right) + \left(\frac 18 - \frac{1}{20}\right) + \cdots \\ & = \sum_{n \ = \ 1}^{\infty} \Bigg[\left(\frac 12\right)^n - \frac{1}{(n + 1)(n + 2)}\Bigg] \\ & = \sum_{n \ = \ 1}^{\infty} \left(\frac 12\right)^n - \sum_{n \ = \ 1}^{\infty} \frac{1}{(n + 1)(n + 2)} \end{aligned}

If we can find the sum of both series, we'll have the value of S S .

Now for that first sum, we can apply the good ol' formula for finding sums of infinite geometric series, but that's boring! Instead, here's a nice proof without words I'll leave you with to show that n = 1 ( 1 2 ) n = 1 \displaystyle \sum_{n \ = \ 1}^{\infty} \left(\frac 12\right)^n = 1 :

For the second sum, we'll use a telescoping series:

n = 1 1 ( n + 1 ) ( n + 2 ) = n = 1 ( 1 n + 1 1 n + 2 ) = lim n k = 1 n ( 1 k + 1 1 k + 2 ) = lim n ( 1 2 1 3 ) + ( 1 3 1 4 ) + ( 1 4 1 5 ) + + ( 1 n 1 n + 1 ) + ( 1 n + 1 1 n + 2 ) = lim n ( 1 2 1 n + 2 ) = 1 2 \displaystyle \begin{aligned} \sum_{n \ = \ 1}^{\infty} \frac{1}{(n + 1)(n + 2)} & = \sum_{n \ = \ 1}^{\infty} \left(\frac{1}{n + 1} - \frac{1}{n + 2}\right) \\ & = \lim_{n \to \infty} \sum_{k \ = \ 1}^{n} \left(\frac{1}{k + 1} - \frac{1}{k + 2}\right) \\ & = \lim_{n \to \infty} \left(\frac 12 - \frac 13\right) + \left(\frac 13 - \frac 14\right) + \left(\frac 14 - \frac 15\right) + \cdots + \left(\frac 1n - \frac{1}{n + 1}\right) + \left(\frac{1}{n + 1} - \frac{1}{n + 2}\right) \\ & = \lim_{n \to \infty} \left(\frac 12 - \frac{1}{n + 2}\right) \\ & = \frac 12 \end{aligned}

Hence, we have

S = n = 1 ( 1 2 ) n n = 1 1 ( n + 1 ) ( n + 2 ) = 1 1 2 = 1 2 \displaystyle \begin{aligned} S & = \sum_{n \ = \ 1}^{\infty} \left(\frac 12\right)^n - \sum_{n \ = \ 1}^{\infty} \frac{1}{(n + 1)(n + 2)} \\ & = 1 - \frac 12 \\ & = \boxed{\displaystyle \frac 12} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...