Two Triangles in a Circle

Geometry Level 4

A B C \triangle ABC is inscribed in a circle of radius 1. As shown in the diagram, chord A X AX bisects C A B . \angle CAB. Similarly, chord B Y BY bisects A B C \angle ABC and chord C Z CZ bisects B C A . \angle BCA.

Then the cube of the area of X Y Z \triangle XYZ is at least p q \frac{p}{q} times the area of A B C , \triangle ABC, where p p and q q are coprime positive integers. What is p + q ? p + q?


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Jun 23, 2017

Let [ A B C ] [ABC] be the area of A B C , \triangle ABC, and define [ X Y Z ] [XYZ] similarly. It can be shown that

16 [ X Y Z ] 3 27 R 4 [ A B C ] , 16[XYZ]^3 \geq 27R^4[ABC],

where R R is the radius of ω \omega i.e. the circumcircle of A B C . \triangle ABC. Since R = 1 , R = 1, we have 16 [ X Y Z ] 3 27 [ A B C ] , 16[XYZ]^3 \geq 27[ABC], or [ X Y Z ] 3 27 16 [ A B C ] . [XYZ]^3 \geq \dfrac{27}{16} [ABC]. Thus, p + q = 27 + 16 = 43 . p + q = 27 + 16 = \boxed{43}.


In this section, we shall prove the inequality. (This is probably not the best way to prove it, since I'm still learning how to tackle inequalities. Let me know if there are any errors in the following proof.)

Recall that the area of A B C \triangle ABC is equal to 2 R 2 sin A sin B sin C . 2R^2 \sin A \sin B \sin C. To find the angle measures of X Y Z , \triangle XYZ, we see that

X = A X Z + A X Y = A C Z + A B Y = 1 2 ( B + C ) . \angle X = \angle AXZ + \angle AXY = \angle ACZ + \angle ABY = \dfrac{1}{2} (\angle B + \angle C).

Similarly, Y = 1 2 ( C + A ) \angle Y = \dfrac{1}{2} (\angle C + \angle A) and Z = 1 2 ( A + B ) . \angle Z = \dfrac{1}{2} (\angle A + \angle B). Thus, the area of X Y Z \triangle XYZ can be written as 2 R 2 sin B + C 2 sin C + A 2 sin A + B 2 . 2R^2 \sin \dfrac{B+C}{2} \sin \dfrac{C+A}{2} \sin \dfrac{A+B}{2}. We can manipulate this to get

[ X Y Z ] = 2 R 2 sin B + C 2 sin C + A 2 sin A + B 2 = 2 R 2 sin ( 90 A 2 ) sin ( 90 B 2 ) sin ( 90 C 2 ) = 2 R 2 cos A 2 cos B 2 cos C 2 . \begin{aligned} [XYZ] &= 2R^2 \sin \dfrac{B+C}{2} \sin \dfrac{C+A}{2} \sin \dfrac{A+B}{2} \\ &= 2R^2 \sin \left ( 90 - \dfrac{A}{2} \right ) \sin \left ( 90 - \dfrac{B}{2} \right ) \sin \left ( 90 - \dfrac{C}{2} \right ) \\ &= 2R^2 \cos \dfrac{A}{2} \cos \dfrac{B}{2} \cos \dfrac{C}{2}. \end{aligned}

Plugging these values in to our given inequality gives us

16 [ X Y Z ] 3 27 R 4 [ A B C ] 16 ( 2 R 2 cos A 2 cos B 2 cos C 2 ) 3 27 R 4 ( 2 R 2 sin A sin B sin C ) 64 cos 3 A 2 cos 3 B 2 cos 3 C 2 27 sin A sin B sin C 64 cos 3 A 2 cos 3 B 2 cos 3 C 2 27 ( 2 sin A 2 cos A 2 ) ( 2 sin B 2 cos B 2 ) ( 2 sin C 2 cos C 2 ) 8 cos 2 A 2 cos 2 B 2 cos 2 C 2 27 sin A 2 sin B 2 sin C 2 8 ( 1 sin 2 A 2 ) ( 1 sin 2 B 2 ) ( 1 sin 2 C 2 ) 27 sin A 2 sin B 2 sin C 2 . \begin{aligned} 16[XYZ]^3 &\geq 27R^4[ABC] \\ 16 \left ( 2R^2 \cos \dfrac{A}{2} \cos \dfrac{B}{2} \cos \dfrac{C}{2} \right )^3 &\geq 27R^4(2R^2 \sin A \sin B \sin C) \\ 64 \cos^3 \dfrac{A}{2} \cos^3 \dfrac{B}{2} \cos^3 \dfrac{C}{2} &\geq 27 \sin A \sin B \sin C \\ 64 \cos^3 \dfrac{A}{2} \cos^3 \dfrac{B}{2} \cos^3 \dfrac{C}{2} &\geq 27 \left (2 \sin \dfrac{A}{2} \cos \dfrac{A}{2} \right ) \left (2 \sin \dfrac{B}{2} \cos \dfrac{B}{2} \right ) \left (2 \sin \dfrac{C}{2} \cos \dfrac{C}{2} \right ) \\ 8 \cos^2 \dfrac{A}{2} \cos^2 \dfrac{B}{2} \cos^2 \dfrac{C}{2} &\geq 27 \sin \dfrac{A}{2} \sin \dfrac{B}{2} \sin \dfrac{C}{2} \\ 8 \left (1 - \sin^2 \dfrac{A}{2} \right ) \left (1 - \sin^2 \dfrac{B}{2} \right ) \left (1 - \sin^2 \dfrac{C}{2} \right ) &\geq 27 \sin \dfrac{A}{2} \sin \dfrac{B}{2} \sin \dfrac{C}{2}. \end{aligned}

Let a = sin A 2 , b = sin B 2 , c = sin C 2 . a = \sin \dfrac{A}{2}, b = \sin \dfrac{B}{2}, c = \sin \dfrac{C}{2}. Our inequality is equivalent to 8 ( 1 a 2 ) ( 1 b 2 ) ( 1 c 2 ) 27 a b c . 8(1 - a^2)(1 - b^2)(1 - c^2) \geq 27abc.

Since 0 < A , B , C < 18 0 , 0^{\circ} < A, B, C < 180^{\circ}, we see that 0 < a , b , c < 1 , 0 < a, b, c < 1, so 1 a 2 , 1 b 2 , 1 c 2 > 0. 1 - a^2, 1 - b^2, 1 - c^2 > 0. By the AM-GM Inequality, we have

a b c ( 1 a 2 ) ( 1 b 2 ) ( 1 c 2 ) ( a 1 a 2 + b 1 b 2 + c 1 c 2 3 ) 3 . \dfrac{abc}{(1 - a^2)(1 - b^2)(1 - c^2)} \leq \left ( \dfrac{\frac{a}{1 - a^2} + \frac{b}{1 - b^2} + \frac{c}{1 - c^2}}{3} \right )^3.

Next, applying Titu's Lemma, we get

a 1 a 2 + b 1 b 2 + c 1 c 2 = 1 1 a a + 1 1 b b + 1 1 c c 9 1 a + 1 b + 1 c ( a + b + c ) . \begin{aligned} \dfrac{a}{1 - a^2} + \dfrac{b}{1 - b^2} + \dfrac{c}{1 - c^2} &= \dfrac{1}{\frac{1}{a} - a} + \dfrac{1}{\frac{1}{b} - b} + \dfrac{1}{\frac{1}{c} - c} \\ &\leq \dfrac{9}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - (a + b + c)}. \end{aligned}

Let k = 1 a + 1 b + 1 c . k = \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}. By Cauchy-Schwarz, a + b + c 9 k , a + b + c \leq \dfrac{9}{k}, so

9 1 a + 1 b + 1 c ( a + b + c ) 9 k 9 k = 9 k k 2 9 . \begin{aligned} \dfrac{9}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - (a + b + c)} &\leq \dfrac{9}{k - \frac{9}{k}} \\ &= \dfrac{9k}{k^2 - 9}. \end{aligned}

Thus, we must determine if 9 k k 2 9 2. \dfrac{9k}{k^2 - 9} \leq 2. Indeed, this inequality is equivalent to 2 k 2 9 k 18 0 , 2k^2 - 9k - 18 \geq 0, or ( 2 k + 3 ) ( k 6 ) 0. (2k + 3)(k - 6) \geq 0. But, we know that k 6 , k \geq 6, which can be proved by applying the Erdös-Mordell Inequality for the incenter of a triangle. The desired result follows. Equality occurs when A B C \triangle ABC is equilateral. \blacksquare

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...