Two variables... One equation?

Algebra Level 3

If ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , . . . , ( x n , y n ) (x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3}), ..., (x_{n}, y_{n}) are the real co-ordinates which are the solution(s) to the equation

( 4 x 2 12 x + 25 ) ( y 2 4 y + 8 ) = 64 (4x^{2} - 12x + 25)(y^{2} - 4y + 8) = 64 ,

Find ( i = 1 n x i + y i ) 0.5 (\sum _{i = 1}^{n}x_{i} + y_{i}) - 0.5

This is a modified AITMO 2013 problem.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Eddie The Head
May 13, 2014

We have ( 4 x 2 12 x + 25 ) ( y 2 4 y + 8 ) = 64 (4x^{2}-12x+25)(y^{2}-4y+8) = 64 Factoring out the 4 we get, 4 ( x 2 2 3 2 + 9 4 + 4 ) ( ( y 2 ) 2 + 4 ) = 64 4(x^{2}-2 * \frac{3}{2} + \frac{9}{4} + 4)((y-2)^{2}+4) = 64 ( ( x 3 / 2 ) 2 + 4 ) ( ( y 2 ) 2 + 4 ) = 16 ((x-3/2)^{2}+4)((y-2)^{2}+4) = 16

But we have ( x 3 / 2 ) 2 + 4 4 (x-3/2)^{2}+4 \ge 4 and ( y 2 ) 2 + 4 4 (y-2)^{2}+4 \ge 4 .

So their product is 16 \ge 16 .

So the only possibility is that they are equal to 4 that is x = 3 / 2 x = 3/2 and y = 2 y = 2 . Hence the sum is 1.5 + 2 = 3.5 1.5+2 = 3.5

So if we take box the value is 3 \boxed{3} !

The problem writer should have allowed decimals as 3.5 is the correct answer (according to my and eddie's approaches at least :/ ). I got 3.5 too but couldn't type it in because the answer prompt can only take integer numbers.

Alaa Qarooni - 7 years ago

Alaa Qarooni you forgot to minus 0.5

Quoc Hai - 7 years ago
Enoc Cetina
Aug 3, 2014

( 4 x 2 12 x + 25 ) ( y 2 4 y + 8 ) = 64 W e h a v e 4 x 2 12 x + 25 = ( 4 x 2 12 x + 9 ) + 16 = ( 2 x 3 ) 2 + 4 2 y 2 4 y + 8 = ( y 2 4 y + 4 ) + 4 = ( y 2 ) 2 + 2 2 L e t b e a = ( 2 x 3 ) a n d b = ( y 2 ) T h e n w e h a v e ( a 2 + 4 2 ) ( b 2 + 2 2 ) = 8 2 ( a b ) 2 + ( 2 a ) 2 + ( 4 b ) 2 + 8 2 = 8 2 ( a b ) 2 + ( 2 a ) 2 + ( 4 b ) 2 = 0 a b = 0 , 2 a = 0 a n d 4 b = 0 b e c a u s e t h e 3 t e r m s o f t h e L H S a r e s q u a r e s a n d h e n c e c a n ´ t b e n e g a t i v e s , t h i s m e a n s a = 0 a n d b = 0 2 x 3 = 0 x = 3 / 2 y 2 = 0 y = 2 T h e s e a r e t h e u n i q u e s o l u t i o n s H e n c e ( i = 1 n x i + y i ) 0.5 = [ ( 3 / 2 ) + 2 ] ( 1 / 2 ) = 3 (4{ x }^{ 2 }-12x+25)({ y }^{ 2 }-4y+8)=64\\ We\quad have\\ 4{ x }^{ 2 }-12x+25=(4{ x }^{ 2 }-12x+9)+16={ (2x-3) }^{ 2 }+{ 4 }^{ 2 }\\ { y }^{ 2 }-4y+8=({ y }^{ 2 }-4y+4)+4={ (y-2) }^{ 2 }+{ 2 }^{ 2 }\\ Let\quad be\quad a=(2x-3)\quad and\quad b=(y-2)\\ Then\quad we\quad have\\ ({ a }^{ 2 }+{ 4 }^{ 2 })({ b }^{ 2 }+{ 2 }^{ 2 })={ 8 }^{ 2 }\\ { (ab) }^{ 2 }+{ (2a) }^{ 2 }+{ (4b) }^{ 2 }+{ 8 }^{ 2 }={ 8 }^{ 2 }\\ { (ab) }^{ 2 }+{ (2a) }^{ 2 }+{ (4b) }^{ 2 }=0\quad \\ ab=0,\quad 2a=0\quad and\quad 4b=0\quad because\quad the\quad 3\quad terms\quad of\quad the\quad \\ LHS\quad are\quad squares\quad and\quad hence\quad can´t\quad be\quad negatives,\quad this\quad \\ means\quad a=0\quad and\quad b=0\\ 2x-3=0\Rightarrow x=3/2\\ y-2=0\Rightarrow y=2\\ These\quad are\quad the\quad unique\quad solutions\quad \\ Hence\quad (\sum _{ i=1 }^{ n }{ { x }_{ i }+{ y }_{ i } } )-0.5=[(3/2)+2]-(1/2)=3

Rasmus Brammer
Nov 6, 2014

First we use: (4x^2-12x+25)=((2x-3)^2+16) and (y^2-4y+8)=((y-2)^2+4) we then get: ((2x-3)^2+16)((y-2)^2+4) = 64 since 16 * 4 = 64 and (2x-3)^2 and (y-2)^2 is only greater or equal to 0 where equality holds for x= 1,5 and y = 2

We then have 1,5 + 2 - 0,5 = 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...