Type of Triangle 1

Geometry Level 3

( sin C + cos A ) x 2 + 2 x cos B sin C + cos A = 0 (\sin \mathrm{C}+\cos \mathrm{A})x^2+2x\cos \mathrm{B}-\sin \mathrm{C}+\cos \mathrm{A}=0

The equation above has a repeated root. What type of triangle is A B C \bigtriangleup \mathrm{ABC} ?

Equilateral Triangle Right Triangle where A = π 2 \angle A=\frac{\pi}{2} Right Triangle where B = π 2 \angle B=\frac{\pi}{2} Isosceles Triangle where b = c b=c Isosceles Triangle where a = b a=b

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Junghwan Han
Jun 27, 2019

D 4 = cos 2 B + ( sin C + cos A ) ( sin C cos A ) = 0 \frac{D}{4}=\cos^2 B+(\sin C+\cos A)(\sin C-\cos A)=0 cos 2 B + sin 2 C cos 2 A = 0 \cos^2 B+\sin^2 C-\cos^2 A=0 Due to the Pythagorean Trigonometric Identity sin 2 θ + cos 2 θ = 1 \sin^2 \theta + \cos^2 \theta = 1 1 sin 2 B + sin 2 C ( 1 sin 2 A ) = 0 1-\sin^2 B+\sin^2 C-(1-\sin^2 A)=0 sin 2 A sin 2 B + sin 2 C = 0 \sin^2 A-\sin^2 B+\sin^2 C=0 Due to the Law of Sines sin A = a 2 R \sin A=\frac{a}{2R} sin B = b 2 R \sin B=\frac{b}{2R} sin C = c 2 R \sin C=\frac{c}{2R} Where R R represents the radius of the circumscribed circle of A B C \bigtriangleup ABC ( a 2 R ) 2 ( b 2 R ) 2 + ( c 2 R ) 2 = 0 \left(\frac{a}{2R}\right)^2-\left(\frac{b}{2R}\right)^2+\left(\frac{c}{2R}\right)^2=0 a 2 b 2 + c 2 4 R 2 = 0 \frac{a^2-b^2+c^2}{4R^2}=0 a 2 + c 2 = b 2 ( R 0 ) \therefore a^2+c^2=b^2 \hspace{1cm} (\because R \neq 0) Therefore the triangle A B C \bigtriangleup ABC is a right triangle where B \angle B is right angle.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...