Type of triangle-2

Geometry Level 4

If in a Δ A B C \Delta ABC , ( 1 r 1 r 2 ) ( 1 r 1 r 3 ) = 2 (1-\frac{r_{1}}{r_{2}})(1-\frac{r_{1}}{r_{3}})=2 then the triangle is

r 1 , r 2 , r 3 r_{1},r_{2},r_{3} are ex-radii of Δ A B C \Delta ABC

Equilateral None Isosceles Right angled

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let a a , b b and c c be the sides of A B C \triangle ABC . Now, we can express the three ex-radii with the following formulas (with r 1 r_1 opposite to A A and so on), where [ A B C ] [ABC] is the area of A B C \triangle ABC :

r 1 = 2 [ A B C ] a + b + c , r 2 = 2 [ A B C ] a b + c , r 3 = 2 [ A B C ] a + b c r_1=\dfrac{2[ABC]}{-a+b+c} , r_2=\dfrac{2[ABC]}{a-b+c} , r_3=\dfrac{2[ABC]}{a+b-c}

Now, substituting in the given expression:

( 1 a b + c a + b + c ) ( 1 a + b c a + b + c ) = 2 \left(1-\dfrac{a-b+c}{-a+b+c}\right)\left(1-\dfrac{a+b-c}{-a+b+c}\right)=2

Now try to simplify until we obtain something familiar:

( a + b + c a + b c a + b + c ) ( a + b + c a b + c a + b + c ) = 2 2 ( b a ) a + b + c 2 ( c a ) a + b + c = 2 2 ( b a ) ( c a ) = ( a + b + c ) 2 2 b c 2 a b 2 a c + 2 a 2 = a 2 + b 2 + c 2 2 a b 2 a c + 2 b c a 2 = b 2 + c 2 \left(\dfrac{-a+b+c-a+b-c}{-a+b+c}\right)\left(\dfrac{-a+b+c-a-b+c}{-a+b+c}\right)=2 \\ \dfrac{2(b-a)}{-a+b+c} \cdot \dfrac{2(c-a)}{-a+b+c}=2 \\ 2(b-a)(c-a)=(-a+b+c)^2 \\ 2bc-2ab-2ac+2a^2=a^2+b^2+c^2-2ab-2ac+2bc \\ a^2=b^2+c^2

By the converse of the Pythagoeran Theorem, A B C \triangle ABC is a right triangle at A A .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...