Typical trigonometry question for IIT JEE

Calculus Level 2

If b sin x + a cos x = a b\sin x+a\cos x=a and cos x 1 \cos x\neq 1 then value of sin x + cos x \sin x+\cos x is

0 2 a b + a 2 b 2 a 2 + b 2 \dfrac{2ab+a^2-b^2}{a^2+b^2} 2 a b + a 2 + b 2 a 2 + b 2 \dfrac{2ab+a^2+b^2}{a^2+b^2} 2 a b a 2 + b 2 a 2 + b 2 \dfrac{2ab-a^2+b^2}{a^2+b^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jitendra Kumar
Mar 7, 2018

b sin x + a cos x = a b\sin x+a\cos x =a

Divide both sides by a 2 + b 2 \sqrt{a^2+b^2}

b a 2 + b 2 sin x + a a 2 + b 2 cos x = a a 2 + b 2 \dfrac{b}{\sqrt{a^2+b^2}}\sin x+\dfrac{a}{\sqrt{a^2+b^2}} \cos x=\dfrac{a}{\sqrt{a^2+b^2}}

Take b a 2 + b 2 = sin α a a 2 + b 2 = cos α tan α = b a \dfrac{b}{\sqrt{a^2+b^2}}=\sin \alpha \Rightarrow \dfrac{a}{\sqrt{a^2+b^2}}=\cos \alpha\Rightarrow \tan\alpha =\dfrac{b}{a}

sin α sin x + cos α cos x = cos α \Rightarrow \sin\alpha \sin x+\cos\alpha \cos x=\cos\alpha

cos ( x α ) = cos α \Rightarrow \cos(x-\alpha)=\cos\alpha

x α = 2 n π ± α \Rightarrow x-\alpha=2n\pi \pm \alpha

x = 2 n π + 2 α \Rightarrow x=2n\pi + 2\alpha or x = 2 n π x = 2n\pi (Told in the question to reject)

Hence sin x + cos x = sin ( 2 n π + 2 α ) + cos ( 2 n π + 2 α ) = sin 2 α + cos 2 α \sin x+\cos x =\sin(2n\pi+2\alpha)+\cos (2n\pi+2\alpha) =\sin 2\alpha+\cos 2\alpha

= 2 tan α 1 + tan 2 α + 1 tan 2 α 1 + tan 2 α = 2 a b + a 2 b 2 a 2 + b 2 = \dfrac{2\tan \alpha}{1+\tan^2\alpha}+\dfrac{1-\tan^2\alpha}{1+\tan^2\alpha}=\dfrac{2ab+a^2-b^2}{a^2+b^2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...