Ugly Derivative

Calculus Level 1

y = cos 1 cos ( log 2 2 ln e sin 1 sin x ) \large y = \cos^{-1}\cos(\log_{2}2^{\ln e^{\sin^{-1}\sin x}})

For y y as defined above, find d y d x \dfrac{dy}{dx} at x = π 4 x = \dfrac{\pi}{4} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

y = cos 1 cos ( log 2 2 ln e sin 1 sin x ) for π 2 x π 2 = cos 1 cos ( log 2 2 ln e x ) = cos 1 cos ( log 2 2 x ) = cos 1 cos x for 0 x π = x \begin{aligned} y & = \cos^{-1} \cos{\left(\log_2 2^{\ln e^{\color{#3D99F6}\sin^{-1} \sin{x}}} \right)} & \small \color{#3D99F6} \text{for } - \frac \pi 2 \le x \le \frac \pi 2 \\ & = \cos^{-1} \cos{\left(\log_2 2^{\ln e^{\color{#3D99F6}x}} \right)} \\ & = \cos^{-1} \cos{\left(\log_2 2^{x} \right)} \\ & = \color{#3D99F6} \cos^{-1} \cos{x} & \small \color{#3D99F6} \text{for }0 \le x \le \pi \\ & =\color{#3D99F6} x \end{aligned}

d y d x = 1 \implies \dfrac{dy}{dx} = \boxed{1}

Note that this only works for x [ 0 , π 2 ] x \in [0, \frac{\pi}{2}] due to the constraints on the ranges of sin 1 x \sin^{-1} x and cos 1 x . \cos^{-1} x.

Steven Yuan - 3 years, 2 months ago

can anyone please explain how the equation was symplified to x?! i tried applying the chain rule and got a mess.

j parra - 3 years, 2 months ago

Log in to reply

inverse function

David Ding - 3 years, 2 months ago

In general, y = f ( x ) y = f(x) , x = f 1 ( y ) \implies x = f^{-1} (y) . y = cos x y= \cos x , cos 1 ( y ) = x \implies \cos^{-1} (y) = x , cos 1 ( cos x ) = x \implies \cos^{-1} (\cos x) = x .

Chew-Seong Cheong - 3 years, 2 months ago
Deepak Kumar
Sep 30, 2015

By observation,y=x=>dy/dx=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...