Ugly Integral

Calculus Level 3

0 ln ( 1 + t 2 x 2 ) 1 + x 2 d x = π ln 2019 \int_0^\infty \frac{\ln \left(1+\frac{t^2}{x^2}\right)}{1+x^2}\; dx = \pi \ln 2019

Find the value of t t .


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 30, 2018

Relevant wiki: Integration Tricks

I ( t ) = 0 ln ( 1 + t 2 x 2 ) 1 + x 2 d x Using 0 f ( x ) d x = 0 f ( 1 x ) x 2 d x = 0 ln ( 1 + t 2 x 2 ) 1 + x 2 d x I ( t ) t = 0 2 t x 2 ( 1 + x 2 ) ( 1 + t 2 x 2 ) d x = 2 t t 2 1 0 ( 1 x 2 + 1 1 t 2 x 2 + 1 ) d x = 2 t t 2 1 [ tan 1 x tan 1 ( t x ) t ] 0 = π t + 1 I ( t ) = π t + 1 d t = π ln ( t + 1 ) + C where C is the constant of integration. I ( 0 ) = π ln ( 0 + 1 ) + C Note that I ( 0 ) = 0 C = 0 I ( t ) = π ln ( t + 1 ) = π ln 2019 t = 2018 \begin{aligned} I(t) & = \int_0^\infty \frac {\ln \left(1+\frac {t^2}{x^2}\right)}{1+x^2} dx & \small \color{#3D99F6} \text{Using }\int_0^\infty f(x) \ dx = \int_0^\infty \frac {f\left( \frac 1x \right)}{x^2} dx \\ & = \int_0^\infty \frac {\ln \left(1+t^2x^2\right)}{1+x^2} dx \\ \frac {\partial I(t)}{\partial t} & = \int_0^\infty \frac {2tx^2}{(1+x^2)(1+t^2x^2)} dx \\ & = \frac {2t}{t^2-1} \int_0^\infty \left(\frac 1{x^2+1} - \frac 1{t^2x^2+1}\right) dx \\ & = \frac {2t}{t^2-1} \left[ \tan^{-1} x - \frac {\tan^{-1} (tx)}t \right]_0^\infty \\ & = \frac \pi{t+1} \\ \implies I(t) & = \int \frac \pi{t+1} dt \\ & = \pi \ln (t+1) + C & \small \color{#3D99F6} \text{where } C \text{ is the constant of integration.} \\ I(0) & = \pi \ln(0+1) + C & \small \color{#3D99F6} \text{Note that } I(0) = 0 \implies C = 0 \\ \implies I(t) & = \pi \ln(t+1) = \pi \ln 2019 \\ \implies t & = \boxed{2018} \end{aligned}

Mark Hennings
Apr 30, 2018

If we define f ( t ) = 0 ln ( 1 + t 2 x 2 ) 1 + x 2 d x t 0 f(t) \; = \; \int_0^\infty \frac{\ln\big(1 + \frac{t^2}{x^2}\big)}{1+x^2}\,dx \hspace{2cm} t \ge 0 then, for t > 0 t > 0 , f ( t ) = 0 1 1 + x 2 1 1 + t 2 x 2 2 t x 2 d t = 2 t 0 d x ( x 2 + 1 ) ( x 2 + t 2 ) = 2 t t 2 1 0 ( 1 x 2 + 1 1 x 2 + t 2 ) d x = 2 t t 2 1 [ tan 1 x 1 t tan 1 x t ] 0 = 2 t t 2 1 ( 1 t 1 ) π 2 = π t + 1 \begin{aligned} f'(t) & = \; \int_0^\infty \frac{1}{1+x^2} \frac{1}{1 + \frac{t^2}{x^2}} \frac{2t}{x^2}\,dt \; = \; 2t\int_0^\infty\frac{dx}{(x^2+1)(x^2+t^2)} \\ & = \; \frac{2t}{t^2-1}\int_0^\infty \left(\frac{1}{x^2+1} - \frac{1}{x^2 + t^2}\right)\,dx \; = \; \frac{2t}{t^2-1}\Big[\tan^{-1}x - \tfrac{1}{t}\tan^{-1}\tfrac{x}{t}\big]_0^\infty \\ & = \; \frac{2t}{t^2-1} \big(1 - t^{-1}\big) \tfrac{\pi}{2} \; = \; \tfrac{\pi}{t+1} \end{aligned} Since f ( 0 ) = 0 f(0) = 0 we deduce that f ( t ) = π ln ( t + 1 ) f(t) = \pi\ln(t+1) . Thus the answer is 2018 \boxed{2018} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...