Ugly Or Beautiful Expression

Algebra Level 4

sin θ = 1 90 1 90 2 1 {\color{#3D99F6}\sin \theta }={\color{#D61F06} \dfrac{\sqrt[90] {-1} -\sqrt[90]{-\sqrt{-1}} }{2\sqrt{-1}}} If θ \theta is in degree then find the value of θ \theta .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Mendrin
May 19, 2018

S i n ( 1 ) = 1 2 i e i π 180 1 2 i e i π 180 Sin(1) = \dfrac {1}{2} ie^{- \frac{i \pi}{180}} - \dfrac{1}{2} ie^{ \frac{i \pi}{180}}

1 2 i ( ( e i π 2 ) 1 90 + ( e i π 2 ) 1 90 ) \Rightarrow \dfrac{1}{2i} \left( - (e^{- \frac{i \pi}{2}})^{\frac{1}{90}} + (e^{ \frac{i \pi}{2}})^{\frac{1}{90}} \right)

1 2 i ( ( i ) 1 90 + ( i ) 1 90 ) \Rightarrow \dfrac{1}{2i} \left( - (-i)^{\frac{1}{90}} + (i)^{\frac{1}{90}} \right)

1 2 i ( ( 0.99984... 0.01745... i ) + ( 0.99984... 0.01745... i ) ) 0.01745... \Rightarrow \dfrac{1}{2i} \left( - ( 0.99984...- 0.01745... i ) + ( 0.99984... - 0.01745... i ) \right) \approx 0.01745...

Problem is that when taking the n n th root of a complex number, there are n n possible answers, not just one.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...