Imaginary Factorial?

Calculus Level 5

( 2 i ) ! = A e π π e B π C \large | (2i)!| = Ae^{\pi}\sqrt{\frac{\pi}{e^{B\pi}-C}}

If the equation above is true for some positive integers A A , B B and C C , find A + B + C A+B+C .

Clarification : i = 1 i=\sqrt{-1} .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 25, 2016

We want Γ ( 1 + 2 i ) |\Gamma(1 + 2i)| . Now Γ ( 1 + 2 i ) 2 = Γ ( 1 + 2 i ) Γ ( 1 2 i ) = Γ ( 2 ) B ( 1 + 2 i , 1 2 i ) = B ( 1 + 2 i , 1 2 i ) \big|\Gamma(1+2i)\big|^2 \; = \; \Gamma(1 + 2i)\Gamma(1-2i) \; = \; \Gamma(2)B(1+2i,1-2i) \; = \; B(1+2i,1-2i) and hence Γ ( 1 + 2 i ) 2 = 0 u 2 i ( 1 + u ) 2 d u \big|\Gamma(1+2i)\big|^2 \; = \; \int_0^\infty \frac{u^{2i}}{(1+u)^2}\,du If we integrate f ( u ) = u 2 i ( u + 1 ) 2 f(u) = \frac{u^{2i}}{(u+1)^2} around the "keyhole contour" γ 1 + γ 2 γ 3 γ 4 \gamma_1 + \gamma_2 - \gamma_3 - \gamma_4 consisting of the segments (for 0 < ϵ < 1 < R 0 < \epsilon < 1 < R ):

  • γ 1 \gamma_1 , the straight line segment from ϵ \epsilon to R R just above the positive real axis,
  • γ 2 \gamma_2 , the circular arc u = R e i θ u = Re^{i\theta} for 0 θ 2 π 0 \le \theta \le 2\pi ,
  • γ 3 \gamma_3 , the straight line segment from ϵ e 2 π i \epsilon e^{2\pi i} to R e 2 π i Re^{2\pi i} just below the positive real axis,
  • γ 4 \gamma_4 , the circular arc u = ϵ e i θ u = \epsilon e^{i\theta} for 0 θ 2 π 0 \le \theta \le 2\pi ,

where we have cut the complex plane along the positive real axis, so that 0 A r g u 2 π 0 \le \mathrm{Arg}\,u \le 2\pi for all u u , then γ 1 f ( u ) d u = ϵ R u 2 i ( u + 1 ) 2 d u γ 3 f ( u ) d u = e 4 π ϵ R u 2 i ( u + 1 ) 2 d u \int_{\gamma_1}f(u)\,du \; = \; \int_\epsilon^R \frac{u^{2i}}{(u+1)^2}\,du \qquad \int_{\gamma_3} f(u)\,du \; =\; e^{-4\pi}\int_\epsilon^R \frac{u^{2i}}{(u+1)^2}\,du while γ 2 f ( u ) d u = O ( R 1 ) γ 4 f ( u ) d u = O ( ϵ ) \int_{\gamma_2} f(u)\,du \; =\; O(R^{-1}) \qquad \qquad \int_{\gamma_4}f(u)\,du \; = \; O(\epsilon) as R R \to \infty and ϵ 0 \epsilon \to 0 respectively. Hence, letting R R \to \infty and ϵ 0 + \epsilon \to 0+ , ( 1 e 4 π ) 0 u 2 i ( u + 1 ) 2 d u = ( γ 1 + γ 2 γ 3 γ 4 ) f ( u ) d u = 2 π i R e s u = 1 f ( u ) = 4 π e 2 π (1 - e^{-4\pi})\int_0^\infty \frac{u^{2i}}{(u+1)^2}\,du \; =\; \left(\int_{\gamma_1} + \int_{\gamma_2} - \int_{\gamma_3} - \int_{\gamma_4}\right)f(u)\,du \; = \; 2\pi i\mathrm{Res}_{u=-1} f(u) \; = \; 4\pi e^{-2\pi} so that Γ ( 1 + 2 i ) 2 = 4 π e 2 π 1 e 4 π = 2 π c o s e c h 2 π = 4 π e 2 π e 4 π 1 \big|\Gamma(1+2i)\big|^2 \; =\; \frac{4\pi e^{-2\pi}}{1 - e^{-4\pi}} \; = \; 2\pi \mathrm{cosech}2\pi \; = \; \frac{4\pi e^{2\pi}}{e^{4\pi}-1} and hence Γ ( 1 + 2 i ) = 2 e π π e 4 π 1 \big| \Gamma(1+2i)\big| \; = \; 2e^{\pi} \sqrt{\frac{\pi}{e^{4\pi}-1}} making the answer 2 + 4 + 1 = 7 2 + 4 + 1 = \boxed{7}

Hasan Kassim
Jul 16, 2016

Start with:

Γ ( 1 + 2 i ) 2 = Γ ( 1 2 i ) Γ ( 1 + 2 i ) \big|\Gamma(1+2i)\big|^2 = \Gamma(1 - 2i)\Gamma(1+2i)

Use the Recursive relation of the Gamma Function :

= ( 2 i ) Γ ( 2 i ) Γ ( 1 + 2 i ) \displaystyle =(-2i) \Gamma(- 2i)\Gamma(1+2i)

Apply Euler's Reflection Formula of the Gamma Function :

= ( 2 i ) π sin ( π ( 2 i ) ) = 2 π i sin ( 2 π i ) \displaystyle = (-2i) \frac{\pi}{\sin (\pi (-2i)) } = \frac{2\pi i}{\sin (2\pi i) }

Recall the Trigonometric-Hyperbolic Functions relations:

= 2 π i i sinh ( 2 π ) = 4 π e 2 π e 2 π = 4 e 2 π π e 4 π 1 \displaystyle = \frac{2\pi i}{i \sinh (2\pi ) } = \frac{4\pi }{ e^{2\pi} - e^{-2\pi} } = 4e^{2\pi} \frac{\pi}{e^{4\pi} -1}

Hence:

Γ ( 1 + 2 i ) = 4 e 2 π π e 4 π 1 = 2 e π π e 4 π 1 \displaystyle \big|\Gamma(1+2i)\big| = \sqrt{4e^{2\pi} \frac{\pi}{e^{4\pi} -1}} = \boxed{ 2e^{\pi} \sqrt{\frac{\pi}{e^{4\pi} -1}}}

Making the answer: 2 + 4 + 1 = 7 2+4+1 = \boxed{7}

Euler's Reflection is valid for z < 1 |z| < 1 .

Felix Johnson - 4 years, 11 months ago

Log in to reply

It is valid for all non-integral complex numbers.

Hasan Kassim - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...