∣ ( 2 i ) ! ∣ = A e π e B π − C π
If the equation above is true for some positive integers A , B and C , find A + B + C .
Clarification : i = − 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Start with:
∣ ∣ Γ ( 1 + 2 i ) ∣ ∣ 2 = Γ ( 1 − 2 i ) Γ ( 1 + 2 i )
Use the Recursive relation of the Gamma Function :
= ( − 2 i ) Γ ( − 2 i ) Γ ( 1 + 2 i )
Apply Euler's Reflection Formula of the Gamma Function :
= ( − 2 i ) sin ( π ( − 2 i ) ) π = sin ( 2 π i ) 2 π i
Recall the Trigonometric-Hyperbolic Functions relations:
= i sinh ( 2 π ) 2 π i = e 2 π − e − 2 π 4 π = 4 e 2 π e 4 π − 1 π
Hence:
∣ ∣ Γ ( 1 + 2 i ) ∣ ∣ = 4 e 2 π e 4 π − 1 π = 2 e π e 4 π − 1 π
Making the answer: 2 + 4 + 1 = 7
Euler's Reflection is valid for ∣ z ∣ < 1 .
Log in to reply
It is valid for all non-integral complex numbers.
Problem Loading...
Note Loading...
Set Loading...
We want ∣ Γ ( 1 + 2 i ) ∣ . Now ∣ ∣ Γ ( 1 + 2 i ) ∣ ∣ 2 = Γ ( 1 + 2 i ) Γ ( 1 − 2 i ) = Γ ( 2 ) B ( 1 + 2 i , 1 − 2 i ) = B ( 1 + 2 i , 1 − 2 i ) and hence ∣ ∣ Γ ( 1 + 2 i ) ∣ ∣ 2 = ∫ 0 ∞ ( 1 + u ) 2 u 2 i d u If we integrate f ( u ) = ( u + 1 ) 2 u 2 i around the "keyhole contour" γ 1 + γ 2 − γ 3 − γ 4 consisting of the segments (for 0 < ϵ < 1 < R ):
where we have cut the complex plane along the positive real axis, so that 0 ≤ A r g u ≤ 2 π for all u , then ∫ γ 1 f ( u ) d u = ∫ ϵ R ( u + 1 ) 2 u 2 i d u ∫ γ 3 f ( u ) d u = e − 4 π ∫ ϵ R ( u + 1 ) 2 u 2 i d u while ∫ γ 2 f ( u ) d u = O ( R − 1 ) ∫ γ 4 f ( u ) d u = O ( ϵ ) as R → ∞ and ϵ → 0 respectively. Hence, letting R → ∞ and ϵ → 0 + , ( 1 − e − 4 π ) ∫ 0 ∞ ( u + 1 ) 2 u 2 i d u = ( ∫ γ 1 + ∫ γ 2 − ∫ γ 3 − ∫ γ 4 ) f ( u ) d u = 2 π i R e s u = − 1 f ( u ) = 4 π e − 2 π so that ∣ ∣ Γ ( 1 + 2 i ) ∣ ∣ 2 = 1 − e − 4 π 4 π e − 2 π = 2 π c o s e c h 2 π = e 4 π − 1 4 π e 2 π and hence ∣ ∣ Γ ( 1 + 2 i ) ∣ ∣ = 2 e π e 4 π − 1 π making the answer 2 + 4 + 1 = 7