Unbelievably simple

Calculus Level 4

If I = 0 1 ( ln x ) 100 d x \displaystyle I=\int _{ 0 }^{ 1 }{ { \left( \ln { x } \right) }^{ 100 } \, dx } , then find the trailing number of zeros in I I .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 0 1 ( l n x ) 100 d x = \displaystyle I = \int_{0}^1 (ln x)^{100} dx = ( x = e t , d x = e t d t ) (x = e^{t}, dx = e^{t} dt) = 0 t 100 e t d t = = \int_{-\infty}^0 t^{100} \cdot e^{t} dt = (Integrating by parts) = [ t 100 e t ] 0 100 0 t 99 e t d t = 100 ( 99 ) 0 t 98 e t d t = = \left[t^{100} e^{t} \right]_{-\infty}^0 - 100 \int_{-\infty}^0 t^{99}e^{t} dt = -100 \cdot (-99)\int_{-\infty}^0 t^{98} et dt = = ( 1 ) 99 100 ! 0 t e t d t = ( 1 ) 100 100 ! 0 e t d t = 100 ! = (-1)^{99}100! \int_{-\infty}^0 t e^{t} dt = (-1)^{100}100! \int_{-\infty}^0 e^{t} dt = 100! \Rightarrow the number of trailing zeroes of I = 100 5 + 100 25 = 24 \frac{100}{5} + \frac{100}{25} = \boxed{24} or 0 t 100 e t d t = \int_{-\infty}^0 t^{100} \cdot e^{t} dt = ( t = u ; d t = d u ) (t = - u; dt = -du) = 0 u 100 e u d u = Γ ( 101 ) = 100 ! = \int_{0}^\infty u^{100} \cdot e^{-u} du = \Gamma(101) = 100!

easy q and nice one.

Ashutosh Sharma - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...