Undetermined Coefficients (Part 1)

Algebra Level 4

1 2 + 3 2 + 5 2 + + 99 2 = ? { 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+\cdots +{ 99 }^{ 2 } = \, ?


You may want to read the wiki Method of Undetermined Coefficients .


The answer is 166650.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sahil Bansal
Mar 24, 2016

Required sum is: 1 2 + 3 2 + 5 2 + . . . + 9 9 2 = ( 1 2 + 2 2 + 3 2 + . . . + 10 0 2 ) ( 2 2 + 4 2 + 6 2 + . . . + 10 0 2 ) 1^2+3^2+5^2+...+99^2=(1^2+2^2+3^2+...+100^2)-(2^2+4^2+6^2+...+100^2)

= n = 1 100 n 2 m = 1 50 ( 2 m ) 2 =\sum_{n=1}^{100}n^2 - \sum_{m=1}^{50}(2m)^2

= n = 1 100 n 2 4 m = 1 50 m 2 =\sum_{n=1}^{100}n^2 - 4\sum_{m=1}^{50}m^2

= 100 101 201 6 4 50 51 101 6 =\frac{100*101*201}{6}-4*\frac{50*51*101}{6}

[ n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 ] [\because \sum n^2=\frac{n(n+1)(2n+1)}{6}]

Hence, required sum is: 166650 \boxed{{\color{#456461}{\textbf{166650}} }}

Did the same way

I Gede Arya Raditya Parameswara - 4 years, 4 months ago

Where did you get that (100 * 101 * 201)/6-(4 * 50 * 51 * 101)/6?

Manu Mehta - 5 years, 2 months ago

Log in to reply

Using: n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum n^2=\frac{n(n+1)(2n+1)}{6}

Sahil Bansal - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...