(Un)Expected Geometric Mean

Calculus Level 5

The number x x is a real number randomly chosen between 0 0 and 1 1 . Another number, y y , is randomly chosen between 0 0 and 1 x 1-x .

Find the expected value of the geometric mean of x x and y y .


The answer is 0.2618.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nick Turtle
Nov 14, 2017

Average all the possibilities using limits to infinity: lim N 2 N 2 a = 0 N b = 0 N a a N b N \displaystyle\lim_{N\to\infty}\frac{2}{N^2} \sum_{a=0}^N \sum_{b=0}^{N-a} \sqrt{\frac{a}{N}\frac{b}{N}}

(We need to average all possible values for a N \frac{a}{N} and b N \frac{b}{N} , where 0 a N 0≤a≤N and 0 b N a 0≤b≤N-a as N N approaches \infty . There are N 2 + N 2 \frac{N^2+N}{2} terms summed, which for large values of N N is approximately equal to N 2 2 \frac{N^2}{2} .)

Substitute x = a N x=\frac{a}{N} , d x = 1 N dx=\frac{1}{N} , y = b N y=\frac{b}{N} , and d y = 1 N dy=\frac{1}{N} and use integral notation: I = 2 0 1 0 1 x x y d y d x I=2\int_0^1\displaystyle\int_0^{1-x}\sqrt{xy}\ dy\ dx = 4 3 0 1 [ x y 3 ] y = 0 y = 1 x d x =\frac{4}{3}\displaystyle\int_0^1\left[\sqrt{xy^3}\right]_{y=0}^{y=1-x}\ dx = 4 3 0 1 x ( 1 x ) 3 d x =\frac{4}{3}\displaystyle\int_0^1\sqrt{x{(1-x)}^3}\ dx = 4 3 0 1 ( 1 x ) x ( 1 x ) d x =\frac{4}{3}\displaystyle\int_0^1(1-x)\sqrt{x(1-x)}\ dx

Since a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle\int_a^bf(x)\ dx=\displaystyle\int_a^bf(a+b-x)\ dx , it can be seen that I I also equals = 4 3 0 1 x x ( 1 x ) d x =\frac{4}{3}\displaystyle\int_0^1x\sqrt{x(1-x)}\ dx

Add the two together and divide by two, obtaining I = 2 3 0 1 ( 1 x ) x ( 1 x ) d x + 2 3 0 1 x x ( 1 x ) d x I=\frac{2}{3}\displaystyle\int_0^1(1-x)\sqrt{x(1-x)}\ dx+\frac{2}{3}\displaystyle\int_0^1x\sqrt{x(1-x)}\ dx = 2 3 0 1 ( ( 1 x ) x ( 1 x ) + x x ( 1 x ) ) d x =\frac{2}{3}\displaystyle\int_0^1\left((1-x)\sqrt{x(1-x)}+x\sqrt{x(1-x)}\right)\ dx = 2 3 0 1 x ( 1 x ) d x =\frac{2}{3}\displaystyle\int_0^1\sqrt{x(1-x)}\ dx = 2 3 0 1 x x 2 d x =\frac{2}{3}\displaystyle\int_0^1\sqrt{x-x^2}\ dx = 2 3 0 1 1 4 ( 1 2 x ) 2 d x =\frac{2}{3}\displaystyle\int_0^1\sqrt{\frac{1}{4}-{\left(\frac{1}{2}-x\right)}^2}\ dx

Substitute 1 2 sin u = 1 2 x \frac{1}{2}\sin{u}=\frac{1}{2}-x and 1 2 cos u d u = d x \frac{1}{2}\cos{u}\ du=dx and simplify using trigonometric identities: = 2 3 π 2 π 2 1 4 1 4 sin 2 u 1 2 cos u d u =\frac{2}{3}\displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{\frac{1}{4}-\frac{1}{4}\sin^2{u}}\frac{1}{2}\cos{u}\ du = 1 6 π 2 π 2 cos 2 u d u =\frac{1}{6}\displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^2{u}\ du = 1 12 π 2 π 2 ( 1 + cos 2 u ) d u =\frac{1}{12}\displaystyle\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1+\cos{2u})\ du = 1 12 [ u + sin 2 u 2 ] π 2 π 2 =\frac{1}{12}[u+\frac{\sin{2u}}{2}]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 1 12 π =\frac{1}{12}\pi

Thus, the answer is π 12 \boxed{\frac{\pi}{12}} .

Plinio Sd
Dec 16, 2017

Let the random variables X X and Y Y represent the first and the second number chosen, respectively. From the question, we have that the p.d.f. of the joint distribution ( X , Y ) (X,Y) is f X , Y ( x , y ) = 1 1 x , 0 < x < 1 , 0 < y < 1 x . f_{X,Y}(x,y) = \frac{1}{1-x},\quad 0<x<1,\,0<y<1-x. From the definition of expected value and geometric mean, we have E [ X Y ] = 0 1 0 1 x x y f X , Y ( x , y ) d y d x = 0 1 0 1 x x y 1 x d y d x = 2 3 0 1 x ( 1 x ) d x . \begin{aligned} \mathbb{E}[\sqrt{XY}] &= \int_{0}^1\int_0^{1-x} \sqrt{xy}\,f_{X,Y}(x,y) \,\mathrm{d}y\,\mathrm{d}x \\ &= \int_{0}^1\int_0^{1-x} \frac{\sqrt{xy}}{1-x} \,\mathrm{d}y\,\mathrm{d}x \\ &= \frac{2}{3} \int_{0}^1 \sqrt{x(1-x)} \mathrm{d}x. \end{aligned} Using the following change of variables u = 2 x 1 u = 2x-1 , one can show that E [ X Y ] = 1 6 1 1 1 u 2 d u . \mathbb{E}[\sqrt{XY}] = \frac{1}{6} \int_{-1}^1 \sqrt{1-u^2}\,\mathrm{d}u. Notice that the integral corresponds to the area of a semi-circle of radius 1, which is π / 2 \pi/2 . Therefore E [ X Y ] = π 12 \boxed{\mathbb{E}[\sqrt{XY}] = \frac{\pi}{12}} .

Solved this the same way....nice work, Plinio!

tom engelsman - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...