If the above integral can be represented in the form , where , , and are integers, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
∫ 0 ∞ e − x 2 x c o s x d x let x 2 = u ⟹ 2 d u = x d x ⟹ ∫ 0 ∞ e − u c o s u 2 d u From taylor series expansion of cosine function, we get - ⟹ 2 1 ∫ 0 ∞ e − u n = 0 ∑ ∞ ( 2 n ) ! ( − 1 ) n ( u ) 2 n d u ⟹ 2 1 n = 0 ∑ ∞ ( 2 n ) ! ( − 1 ) n ∫ 0 ∞ e − u u n d u The above integral is of the form - Γ ( s + 1 ) = ∫ 0 ∞ e − x x s d x = ( s ) ! ⟹ 2 1 n = 0 ∑ ∞ ( 2 n ) ! ( − 1 ) n ∫ 0 ∞ e − u u n d u = 2 1 n = 0 ∑ ∞ ( 2 n ) ! ( − 1 ) n n ! = n = 0 ∑ ∞ 2 ( 2 n ) ! ( − 1 ) n n ! , ⟹ a = − 1 , b = 1 , c = 2 a n d d = 2 ⟹ a + b + c + d = 4