Unfamiliar Equation

Calculus Level 5

2 d 2 y d x 2 + 3 d y d x + y = e 3 x , x R 2 \dfrac{d^2y}{dx^2} + 3 \dfrac{dy}{dx} + y = e^{-3x} , \quad x \in \mathbb{R}

Let y : R R y \colon \mathbb{R} \to \mathbb{R} be a solution of the above ordinary differential equation, satisfying lim x e x y ( x ) = 0 \displaystyle\lim_{x\rightarrow \infty} e^xy(x) = 0 . Find y ( 0 ) y(0) .


The answer is 0.1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 21, 2017

The characteristic equation of the ordinary differential equation is:

2 D 2 + 3 D + 1 = 0 ( 2 D + 1 ) ( D + 1 ) = 0 D = 1 2 , 1 \begin{aligned} 2D^2+3D+1&=0 \\ (2D+1)(D+1)&=0 \\ \implies D &= -\frac 12, \ -1 \end{aligned}

Therefore, the general solution of the ODE is y ( x ) = c 1 e x 2 + c 2 e x y(x)=c_1e^{-\frac x2}+c_2e^{-x} .

Assuming the particular solution of the ODE be:

y ( x ) = c e 3 x y ( x ) = 3 c e 3 x y ( x ) = 9 c e 3 x 2 y ( x ) + 3 y ( x ) + 1 = 10 c e 3 x 2 y ( 0 ) + 3 y ( 0 ) + 1 = 10 c = 1 c = 1 10 \begin{aligned} y(x) &=ce^{-3x} \\ y'(x)&= -3ce^{-3x} \\ y''(x)&= 9ce^{-3x} \\ \implies 2y''(x)+3y'(x)+1&= 10ce^{-3x} \\ 2y''(0)+3y'(0)+1&= 10c = 1 \\ \implies c &=\frac 1{10} \end{aligned}

Therefore, the particular solution of the ODE is y ( x ) = e 3 x 10 y(x)=\frac {e^{-3x}}{10} .

And the complete solution of the ODE is:

y ( x ) = c 1 e x 2 + c 2 e x + e 3 x 10 e x y ( x ) = c 1 e x 2 + c 2 + e 2 x 10 Since lim x e x y ( x ) = 0 c 1 = c 2 = 0 y ( x ) = e 3 x 10 y ( 0 ) = 1 10 = 0.1 \begin{aligned} y(x)&=c_1e^{-\frac x2}+c_2e^{-x} + \frac {e^{-3x}}{10} \\ \implies e^xy(x) &= c_1e^{\frac x2}+c_2 + \frac {e^{-2x}}{10} & \small \color{#3D99F6} \text{Since }\lim_{x \to \infty} e^xy(x)=0 \\ \implies c_1 &=c_2 =0 \\ \implies y(x)&=\frac {e^{-3x}}{10} \\ \implies y(0)&=\frac 1{10} =\boxed{0.1} \end{aligned}

Well explained.... Thanks (+1)

Ravneet Singh - 4 years, 1 month ago
Guilherme Niedu
Apr 21, 2017

One possible solution is:

y ( x ) = c e 3 x \large \displaystyle y(x) = ce^{-3x}

Plugging this into the equation:

18 c e 3 x 9 c e 3 x + c e 3 x = e 3 x \large \displaystyle 18ce^{-3x} - 9ce^{-3x} + ce^{-3x} = e^{-3x}

10 c e 3 x = e 3 x \large \displaystyle 10ce^{-3x} = e^{-3x}

10 c = 1 \large \displaystyle 10c = 1

c = 0.1 \large \displaystyle c = 0.1

y ( x ) = 0.1 e 3 x \color{#20A900} \boxed{\large \displaystyle y(x) = 0.1e^{-3x}}

So:

y ( 0 ) = 0.1 \color{#3D99F6} \boxed{\large \displaystyle y(0) = 0.1}

Yes, the particular solution y p = c e 3 x \large y_{p} = ce^{-3x} ends up being all we need to consider. The homogenous solution is y h = a e x / 2 + b e x \large y_{h} = ae^{-x/2} + be^{-x} , and so the general solution is

y = y h + y p = a e x / 2 + b e x + c e 3 x \large y = y_{h} + y_{p} = ae^{-x/2} + be^{-x} + ce^{-3x} , and so

lim x e x y = lim x ( a e x / 2 + b + c e 2 x ) = 0 \large \displaystyle \lim_{x \to \infty} e^{x}y = \lim_{x \to \infty} (ae^{x/2} + b + ce^{-2x}) = 0 only if a = b = 0 a = b = 0 .

Brian Charlesworth - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...