Unfortunately, it's not in degrees

Geometry Level 5

n = 1 sin ( 360 n ) n = A B π C \sum _{ n=1 }^{ \infty }{ \frac { \sin { \left( 360n \right) } }{ n } } =\frac { A }{ B } \pi -C

If the equation above holds true for positive integers A , B A,B and C C with A , B A,B coprime, submit your answer as C B A C-B-A .

Clarification : All the angles are measured in radians.


The answer is 63.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = n = 1 sin ( 360 n ) n = n = 1 ( e 360 n i ) n = ( n = 1 e 360 n i n ) = ( ln ( 1 e 360 i ) ) = ( ln ( 1 cos 360 i sin 360 ) ) = ( ln ( ( 1 cos 360 ) 2 + sin 2 360 exp ( tan 1 ( sin 360 1 cos 360 ) i ) ) ) = ( ln ( ( 1 cos 360 ) 2 + sin 2 360 ) + tan 1 ( sin 360 1 cos 360 ) i ) = tan 1 ( sin 360 1 cos 360 ) = tan 1 ( 2 tan 180 1 + tan 2 180 1 1 tan 2 180 1 + tan 2 180 ) = tan 1 ( 2 tan 180 1 + tan 2 180 1 + tan 2 180 ) = tan 1 ( 2 tan 180 2 tan 2 180 ) = tan 1 ( 1 tan 180 ) = tan 1 ( cot 180 ) = tan 1 ( tan ( 115 π 2 180 ) ) = 115 π 2 180 \begin{aligned} S & = \sum_{n=1}^\infty \frac {\sin (360n)}n \\ & = \sum_{n=1}^\infty \frac {\Im \left(e^{360ni}\right)}n \\ & = \Im \left( \sum_{n=1}^\infty \frac {e^{360ni}}n \right) \\ & = \Im \left( -\ln \left(1-e^{360i} \right) \right) \\ & = \Im \left( -\ln \left(1-\cos 360 - i \sin 360 \right) \right) \\ & = \Im \left( -\ln \left(\sqrt{(1-\cos 360)^2+\sin^2 360}\exp \left( \tan^{-1 } \left( \frac {-\sin 360}{1-\cos 360} \right)i \right) \right) \right) \\ & = \Im \left( -\ln \left(\sqrt{(1-\cos 360)^2+\sin^2 360}\right) + \tan^{-1 } \left( \frac {\sin 360}{1-\cos 360} \right)i \right) \\ & = \tan^{-1 } \left( \frac {\sin 360}{1-\cos 360} \right) \\ & = \tan^{-1} \left( \frac {\frac {2 \tan 180}{1 + \tan^2 180}}{1 - \frac {1 - \tan^2 180}{1 + \tan^2 180}} \right) \\ & = \tan^{-1} \left( \frac {2\tan 180}{1 + \tan^2 180 - 1 + \tan^2 180} \right) \\ & = \tan^{-1} \left( \frac {2\tan 180}{2\tan^2 180} \right) \\ & = \tan^{-1} \left( \frac 1{\tan 180} \right) \\ & = \tan^{-1} \left( \cot 180 \right) \\ & = \tan^{-1} \left( \tan \left( \frac {115 \pi}2 - 180 \right) \right) \\ & = \frac {115 \pi}2 - 180 \end{aligned}

C B A = 180 2 115 = 63 \implies C-B-A = 180 - 2 - 115 = \boxed{63}

Hey, could you please tell me what is this capital J that you start using on the third equation?
Thank you very much.

A Former Brilliant Member - 4 years, 10 months ago

Log in to reply

That is actually an Im \text{Im} for imaginary part of a complex number . I actually key in " \ Im" and it turns out the be \Im in LaTex. The other is the Re \Re or real part of the complex number.

Chew-Seong Cheong - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...