Unique!

Algebra Level pending

Given a a as a natural number and b b as an odd natural number. If 1 i = 1 2016 ( i + 2 ) 2 i i ( i + 1 ) = 1 2 a b \large 1-\sum_{i=1}^{2016}\frac{(i+2)}{2^{i} \cdot i(i+1) }=\frac{1}{2^{a} \cdot b} Find b a b-a .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
May 10, 2020

Let us rewrite the above series according to:

Σ n = 1 2016 [ 2 n 1 n + 1 ] ( 1 2 ) n = Σ n = 1 2016 [ 0 1 2 x n 1 x n d x ] ( 1 2 ) n = 0 1 ( 2 x 1 ) [ Σ n = 1 2016 ( x 2 ) n ] d x = 0 1 ( 2 x x ) x ( 1 ( x / 2 ) 2016 ) 2 x d x = 0 1 1 x 2016 2 2016 d x = x x 2017 2 2016 2017 0 1 \Sigma_{n=1}^{2016} [\frac{2}{n}-\frac{1}{n+1}] \cdot (\frac{1}{2})^{n} = \Sigma_{n=1}^{2016} [\int_{0}^{1} 2x^{n-1}-x^n dx] \cdot (\frac{1}{2})^{n} = \int_{0}^{1} (\frac{2}{x} - 1)[ \Sigma_{n=1}^{2016} (\frac{x}{2})^{n}] dx = \int_{0}^{1} (\frac{2-x}{x}) \cdot \frac{x(1-(x/2)^{2016})}{2-x} dx = \int_{0}^{1} 1 - \frac{x^{2016}}{2^{2016}} dx = x - \frac{x^{2017}}{2^{2016}2017}|_{0}^{1}

or 1 1 2 2016 2017 . \boxed{1-\frac{1}{2^{2016}2017}}. Finally, 1 [ 1 1 2 2016 2017 ] = 1 2 2016 2017 a = 2016 , b = 2017 b a = 1 . 1 - [1-\frac{1}{2^{2016}2017}] = \frac{1}{2^{2016}2017 } \Rightarrow a = 2016, b = 2017 \Rightarrow b-a = \boxed{1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...