Unique Percentage

Let x < y x <y be positive integers such that gcd ( x , y ) = 1 \gcd(x,y)=1 . We define

f ( x , y ) = x y × 100 100 f(x,y) = \dfrac{\left\lfloor \dfrac{x}{y} \times 100 \right\rfloor}{100}

What is the greatest integer G G , such that for any x 1 , x 2 , y 1 , y 2 G x_1,x_2, y_1,y_2 \leq G satisfying x 1 x 2 , y 1 y 2 x_1 \neq x_2, y_1 \neq y_2 , we have

f ( x 1 , y 1 ) f ( x 2 , y 2 ) ? f(x_1, y_1) \neq f(x_2, y_2 ) ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alex Burgess
Apr 29, 2019

b 2 3 4 5 6 7 8 9 10 11 a 100 a b 1 50 33 25 20 16 14 12 11 10 09 2 66 40 28 22 18 3 75 60 42 37 30 27 4 80 56 44 36 5 83 71 62 55 45 6 85 54 7 87 77 70 63 8 88 72 9 9 0 81 10 9 0 \begin{matrix} & b & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ & a\\ \left \lfloor{100\frac{a}{b}} \right \rfloor& 1 & 50 & 33 & 25 & 20 & 16 & 14 & 12 & 11 & 10 & 09 \\ & 2 &&66 &&40&&28&&22&&18\\ &3&&&75&60&&42&37&&30&27\\ &4&&&&80&&56&&44&&36\\ &5&&&&&83&71&62&55&&45\\ &6&&&&&&85&&&&54\\ &7&&&&&&&87&77&70&63\\ &8&&&&&&&&88&&72\\ &9&&&&&&&&& 90^* &81\\ &10&&&&&&&&&& 90^* \\ \end{matrix}

100 9 10 = 100 10 11 = 90 \left \lfloor{100\frac{9}{10}} \right \rfloor = \left \lfloor{100\frac{10}{11}} \right \rfloor = 90 is the first duplicate.

If there is a restriction that all x 1 , x 2 , y 1 , y 2 x_1,x_2,y_1,y_2 are unique we must look further: b = 12 b = 12 only offers 100 12 = 08 , 500 12 = 41 , 700 12 = 58 , 1100 12 = 91 \frac{100}{12} = 08, \frac{500}{12} = 41, \frac{700}{12} = 58, \frac{1100}{12} = 91 .

b = 13 b r i n g s 07 , 15 , 23 , 3 0 , 38 , 46 , 53 , 61 , 69 , 76 , 84 , 92 b = 13 brings 07, 15, 23, 30^*, 38, 46, 53, 61, 69, 76, 84, 92 with

100 4 13 = 100 3 10 = 30 \left \lfloor {100 \frac{4}{13}} \right \rfloor = \left \lfloor {100 \frac{3}{10}} \right \rfloor = 30 .

Alex Burgess - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...