Unique solution

Algebra Level 4

Find the value of p p if there is a unique value of x x satisfying the equation p 2 x + 1 + 1 = 44 e x ln p p^{2x+1}+1=\sqrt{44}e^{x\ln p}


This is a part of the Set .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 22, 2015

p 2 x + 1 + 1 = 44 e x ln p p 2 x + 1 + 1 = 44 p x p ˙ p 2 x + 1 = 44 p x Let y = p x p y 2 44 y + 1 = 0 y = 44 ± 44 4 p 2 p \begin{aligned} p^{2x+1} + 1 & = \sqrt{44} \color{#3D99F6}{e^{x\ln{p}}} \\ \color{#D61F06}{p^{2x+1}} + 1 & = \sqrt{44} \color{#3D99F6}{p^{x}} \\ \color{#D61F06}{p \dot{} p^{2x}} + 1 & = \sqrt{44} p^{x} \quad \quad \color{#3D99F6}{\text{Let } y = p^x} \\ py^2 - \sqrt{44} y + 1 & = 0 \\ \Rightarrow y & = \frac{\sqrt{44} \pm \sqrt{\color{#3D99F6}{44-4p}}}{2p} \end{aligned}

For a unique x x and hence a unique y y , 44 4 p = 0 p = 11 \quad \Rightarrow \color{#3D99F6}{44 - 4p} = 0 \quad \Rightarrow p = \boxed{11} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...