Unique Triple Integral

Calculus Level 5

0 1 0 1 0 1 ( x y z ) x y z d x d y d z = ? \displaystyle \int_{0}^{1}\int_{0}^{1}\int_{0}^{1} \left ( xyz \right )^{xyz}\,dx \, dy\, dz = \, ?

Give your answer to 3 decimal places.


The answer is 0.83493.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Jan 21, 2017

We have I = 0 1 0 1 0 1 ( x y z ) x y z d x d y d z = n = 0 1 n ! 0 1 0 1 0 1 ( x y z ln ( x y z ) ) n d x d y d z = a , b , c = 0 1 a ! b ! c ! 0 1 0 1 0 1 x a + b + c y a + b + c z a + b + c ( ln x ) a ( ln y ) b ( ln z ) c d x d y d z = a , b , c = 0 1 a ! b ! c ! 0 ! x a + b + c ( ln x ) a d x 0 1 y a + b + c ( ln y ) b d y 0 1 z a + b + c ( ln z ) c d z = a , b , c = 0 1 a ! b ! c ! × ( 1 ) a a ! ( a + b + c + 1 ) a + 1 × ( 1 ) b b ! ( a + b + c + 1 ) b + 1 × ( 1 ) c c ! ( a + b + c + 1 ) c + 1 = a , b , c = 0 ( 1 ) a + b + c ( a + b + c + 1 ) a + b + c + 3 = N = 0 ( 1 ) N ( N + 1 ) N + 3 × 1 2 ( N + 1 ) ( N + 2 ) = 1 2 N = 0 ( 1 ) N ( N + 2 ) ( N + 1 ) N + 2 = 0.83493 \begin{aligned} I & = \int_0^1 \int_0^1 \int_0^1 (xyz)^{xyz}\,dx\,dy\,dz \; = \; \sum_{n=0}^\infty \frac{1}{n!}\int_0^1 \int_0^1 \int_0^1 \big(xyz \ln(xyz)\big)^n\,dx\,dy\,dz \\ & = \sum_{a,b,c=0}^\infty \frac{1}{a!b!c!}\int_0^1\int_0^1\int_0^1 x^{a+b+c}y^{a+b+c}z^{a+b+c} (\ln x)^a (\ln y)^b (\ln z)^c \,dx\,dy\,dz \\ & = \sum_{a,b,c=0}^\infty \frac{1}{a!b!c!}\int_0^! x^{a+b+c}(\ln x)^a\,dx \int_0^1 y^{a+b+c}(\ln y)^b\,dy \int_0^1 z^{a+b+c}(\ln z)^c\,dz \\ & = \sum_{a,b,c=0}^\infty \frac{1}{a!b!c!} \times \frac{(-1)^a a!}{(a+b+c+1)^{a+1}} \times \frac{(-1)^b b!}{(a+b+c+1)^{b+1}} \times \frac{(-1)^c c!}{(a+b+c+1)^{c+1}} \\ & = \sum_{a,b,c=0}^\infty \frac{(-1)^{a+b+c}}{(a+b+c+1)^{a+b+c+3}} \; = \; \sum_{N=0}^\infty \frac{(-1)^N}{(N+1)^{N+3}} \times \tfrac12(N+1)(N+2) \\ & = \tfrac12\sum_{N=0}^\infty \frac{(-1)^N(N+2)}{(N+1)^{N+2}} \; = \; \boxed{0.83493} \end{aligned}

Can u explain 2nd line

Kushal Bose - 4 years, 4 months ago

Log in to reply

I am applying the multinomial expansion ( X + Y + Z ) n = a , b , c 0 a + b + c = n n ! a ! b ! c ! X a Y b Z c (X + Y + Z)^n \; = \; \sum_{{a,b,c \ge 0} \atop {a+b+c=n}} \frac{n!}{a!b!c!}X^aY^bZ^c to the term ( ln ( x y z ) ) n = ( ln x + ln y + ln z ) n \big(\ln(xyz)\big)^n \; = \; (\ln x + \ln y + \ln z)^n

Mark Hennings - 4 years, 4 months ago

Log in to reply

ok i got it

Kushal Bose - 4 years, 4 months ago

But how to calculate last sequence without calculator or any else?

uzumaki nagato tenshou uzumaki - 4 years, 4 months ago

Log in to reply

Well, I don't think the answer is rational, and therefore any calculation, even from a formula, will require a calculator.

If you have a definite value of this Sophomore's Dream-like sum, post it...

Of course, if you want an exact solution to a problem, post it in a way that requires an exact solution. WA can evaluate this integral numerically. I took the time to express it as a highly convergent sum, so that not many terms are needed to obtain 3DP.

Mark Hennings - 4 years, 4 months ago

How did you get from the third to the fourth line? Is this an well known identity?

Chaebum Sheen - 4 years, 3 months ago

Log in to reply

To integrate 0 1 x m ( ln x ) m d x \int_0^1 x^m (\ln x)^m\,dx try integration by parts...

Mark Hennings - 4 years, 3 months ago

or u can use Gamma Function 0 1 x m ( ln x ) n d x \displaystyle \int_0^1 x^{m}(\ln x)^{n} dx let u = ln x u=\ln x then 0 e ( m + 1 ) u u n d u \displaystyle \int_{-\infty}^{0} e^{(m+1)u} u^{n} du let again t = ( m + 1 ) u -t=(m+1)u then 1 m + 1 0 e t ( t m + 1 ) n d t \displaystyle -\dfrac{1}{m+1} \int_{\infty}^{0} e^{-t} \left( \dfrac{-t}{m+1}\right)^{n} dt = ( 1 ) n ( 1 m + 1 ) n + 1 0 e t t n d t = \displaystyle (-1)^{n}\left( \dfrac{1}{m+1}\right)^{n+1} \int_{0}^{\infty} e^{-t} t^{n} dt = ( 1 ) n ( m + 1 ) n + 1 Γ ( n + 1 ) = \displaystyle \dfrac{(-1)^{n}}{(m+1)^{n+1}} \Gamma{(n+1)} = ( 1 ) n n ! ( m + 1 ) n + 1 = \displaystyle \dfrac{(-1)^{n}n!}{(m+1)^{n+1}}

uzumaki nagato tenshou uzumaki - 4 years, 3 months ago

Every time I see a great solution by you, I am blown away! You have got to be the smartest mathematician I have ever seen at work. (Just so you know, I just used Wolfram Alpha to approximate the integral for me. Let's just say it replaces another one that I should've gotten right.) I thought to use e e , but I always forget how helpful using series can be for integration. But even if I had really tried hard on this problem and thought to use series, I probably would have just assumed the approach wouldn't have worked here and given up. Sometimes I wonder if you are only one person or a mathematician army.

James Wilson - 3 years, 5 months ago

Which of your solutions is your favorite?

James Wilson - 3 years, 5 months ago

You lost me right at the first step.

Dhvanit Beniwal - 2 years, 11 months ago

Log in to reply

I am writing ( x y z ) x y z = e x y z ln ( x y z ) (xyz)^{xyz}=e^{xyz\ln(xyz)} , and expanding the exponential.

Mark Hennings - 2 years, 11 months ago
Leonel Castillo
Aug 26, 2018

To approximate the solution first we reduce it to a single integral: Let u = x y u = xy , then d u = y d x du = y dx and thus 0 1 0 1 0 1 ( x y z ) x y z d x d y d z = 0 1 0 1 0 y ( u z ) u z y d u d y d z = 0 1 0 1 u 1 ( u z ) u z y d y d u d z = 0 1 0 1 log 1 u ( u z ) u z d u d z \int_0^1 \int_0^1 \int_0^1 (xyz)^{xyz} dx dy dz = \int_0^1 \int _0^1 \int_0^y \frac{(uz)^{uz}}{y} du dy dz = \int_0^1 \int_0^1 \int_u^1 \frac{(uz)^{uz}}{y} dy du dz = \int_0^1 \int_0^1 \log \frac{1}{u} (uz)^{uz} du dz Similarly, let's take w = u z d w = z d u w = uz \implies dw = zdu 0 1 0 1 log 1 u ( u z ) u z d u d z = 0 1 0 z log z w w w z d w d z = 0 1 w 1 log z w w w z d z d w = 1 2 0 1 w w log ( w ) 2 d w \int_0^1 \int_0^1 \log \frac{1}{u} (uz)^{uz} du dz = \int_0^1 \int_0^z \frac{\log \frac{z}{w} w^w}{z} dw dz = \int_0^1 \int_w^1 \frac{\log \frac{z}{w} w^w}{z} dz dw = \frac{1}{2} \int_0^1 w^w \log(w)^2 dw

So the triple integral is equal to the single integral 1 2 0 1 x x log ( x ) 2 d x \frac{1}{2} \int_0^1 x^x \log(x)^2 dx . We can also find a series expansion through standard methods:

1 2 0 1 x x log ( x ) 2 d x = 1 2 0 1 e x log x log ( x ) 2 d x = 1 2 0 1 n = 0 x n log ( x ) n + 2 n ! d x = 1 2 n = 0 1 n ! 0 1 x n log ( x ) n + 2 d x = 1 2 n = 0 1 n ! ( 1 ) n + 2 ( n + 2 ) ! ( n + 1 ) n + 3 \frac{1}{2} \int_0^1 x^x \log(x)^2 dx = \frac{1}{2} \int_0^1 e^{x \log x} \log(x)^2 dx = \frac{1}{2} \int_0^1 \sum_{n=0}^{\infty} \frac{x^n \log(x)^{n+2}}{n!} dx = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \int_0^1 x^n \log(x)^{n+2} dx = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \frac{(-1)^{n+2} (n+2)!}{(n+1)^{n+3}} = 1 2 n = 0 ( 1 ) n ( n + 1 ) ( n + 2 ) ( n + 1 ) n + 3 = 1 2 n = 0 ( 1 ) n ( n + 2 ) ( n + 1 ) n + 2 = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)(n+2)}{(n+1)^{n+3}} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (n+2)}{(n+1)^{n+2}}

Thus: 0 1 0 1 0 1 ( x y z ) x y z d x d y d z = 1 2 0 1 x x log ( x ) 2 d x = 1 2 n = 0 ( 1 ) n ( n + 2 ) ( n + 1 ) n + 2 \int_0^1 \int_0^1 \int_0^1 (xyz)^{xyz} dx dy dz = \frac{1}{2} \int_0^1 x^x \log(x)^2 dx = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (n+2)}{(n+1)^{n+2}}

Vinod Kumar
Jun 25, 2018

Used Wolfram alpha 3d integration to get the desired answer = 0.83493

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...