Unit digit

2 3 17 × 3 5 25 × 4 31 × 7 7 93 × 8 3 1 32 × 1 9 17 \large 2^{3^{17}}\times 3^{5^{25}}\times 4^{31}\times 7^{7^{93}}\times 8^{31^{32}}\times 19^{17}

Find the unit digit of the number above.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let P = 2 3 17 × 3 5 25 × 4 31 × 7 7 93 × 8 3 1 32 × 1 9 17 = A × B × C × D × E × F P = 2^{3^{17}}\times 3^{5^{25}}\times 4^{31}\times 7^{7^{93}}\times 8^{31^{32}}\times 19^{17} = A \times B \times C \times D \times E \times F .

Since 3, 7, 19 are 10 are coprime integers, for factors B B , D D and F F of P P , we can use Euler's theorem and Euler's totient function ϕ ( 10 ) = 10 × 1 2 × 4 5 = 4 \phi(10) = 10 \times \frac 12 \times \frac 45 = 4 as follows:

B 3 5 25 3 5 25 mod 4 3 ( 4 + 1 ) 25 mod 4 3 (mod 10) D 7 7 93 7 7 93 mod 4 7 ( 8 1 ) 93 mod 4 7 1 mod 4 7 3 3 (mod 10) F 1 9 17 ( 20 1 ) 17 1 9 (mod 10) \begin{aligned} B & \equiv 3^{5^{25}} \equiv 3^{5^{25} \text{ mod 4}} \equiv 3^{(4+1)^{25} \text{ mod 4}} \equiv 3 \text{ (mod 10)} \\ D & \equiv 7^{7^{93}} \equiv 7^{7^{93} \text{ mod 4}} \equiv 7^{(8-1)^{93} \text{ mod 4}} \equiv 7^{-1 \text{ mod 4}} \equiv 7^3 \equiv 3 \text{ (mod 10)} \\ F & \equiv 19^{17} \equiv (20-1)^{17} \equiv -1 \equiv 9 \text{ (mod 10)} \end{aligned}

As 2, 4 and 8 are not coprime integers with 10, we cannot use Euler's theorem, but the fact that 2 n mod 10 = { 6 if n mod 4 = 0 2 if n mod 4 = 1 4 if n mod 4 = 2 8 if n mod 4 = 3 2^n \text{ mod 10} = \begin{cases} 6 & \text{if } n \text{ mod 4} = 0 \\ 2 & \text{if } n \text{ mod 4} = 1 \\ 4 & \text{if } n \text{ mod 4} = 2 \\ 8 & \text{if } n \text{ mod 4} = 3 \end{cases}

A 2 3 17 2 3 17 mod 4 2 ( 4 1 ) 17 mod 4 2 1 mod 4 2 3 8 (mod 10) C 4 31 2 2 × 31 mod 4 2 2 4 (mod 10) E 8 3 1 32 2 3 × 3 1 32 mod 4 2 3 × ( 32 1 ) 32 mod 4 2 3 8 (mod 10) \begin{aligned} A & \equiv 2^{3^{17}} \equiv 2^{3^{17} \text{ mod 4}} \equiv 2^{(4-1)^{17} \text{ mod 4}} \equiv 2^{-1 \text{ mod 4}} \equiv 2^3 \equiv 8 \text{ (mod 10)} \\ C & \equiv 4^{31} \equiv 2^{2\times 31 \text{ mod 4}} \equiv 2^2 \equiv 4 \text{ (mod 10)} \\ E & \equiv 8^{31^{32}} \equiv 2^{3\times 31^{32} \text{ mod 4}} \equiv 2^{3\times (32-1)^{32} \text{ mod 4}} \equiv 2^3 \equiv 8 \text{ (mod 10)} \end{aligned}

Therefore, we have:

P A × B × C × D × E × F (mod 10) 8 × 3 × 4 × 3 × 8 × 9 (mod 10) ( 2 ) × 4 × ( 2 ) × 9 × 9 (mod 10) ( 2 ) × 4 × ( 2 ) × ( 1 ) × ( 1 ) (mod 10) 16 6 (mod 10) \begin{aligned} P & \equiv A \times B \times C \times D \times E \times F \text{ (mod 10)} \\ & \equiv 8 \times {\color{#3D99F6}3} \times 4 \times {\color{#3D99F6}3} \times 8 \times 9 \text{ (mod 10)} \\ & \equiv (-2) \times 4 \times (-2) \times {\color{#3D99F6}9} \times 9 \text{ (mod 10)} \\ & \equiv (-2) \times 4 \times (-2) \times {\color{#3D99F6}(-1)} \times (-1) \text{ (mod 10)} \\ & \equiv 16 \equiv \boxed{6} \text{ (mod 10)} \end{aligned}

To me, the easier way (both in terms of solving and explaining) is to use chinese remainder theorem and consider ( m o d 5 ) , ( m o d 2 ) \pmod{5}, \pmod{2} .

Calvin Lin Staff - 4 years, 1 month ago

Log in to reply

What is Chinese reminder Theorem ??

Nivedit Jain - 3 years, 12 months ago

Log in to reply

You can click on the link and read up the community wiki.

Calvin Lin Staff - 3 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...