Unit digit from A A

Level 2

A = k = 1 2017 ( 2018 k ) 2 + 1 A = \frac{\displaystyle \sum_{k=1}^{2017} \binom{2018}{k}}{2} + 1

Find the unit digit of A A as defined above.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Dec 22, 2017

A = k = 1 2017 ( 2018 k ) 2 + 1 = k = 0 2018 ( 2018 k ) ( 2018 0 ) ( 2018 2018 ) 2 + 1 = ( 1 + 1 ) 2018 1 1 2 + 1 = 2 2017 1 + 1 = 2 2017 \begin{aligned} A & = \frac {\sum_{\color{#3D99F6}k=1}^{\color{#3D99F6}2017}\binom {2018}k}2+1 \\ & = \frac {\sum_{\color{#D61F06}k=0}^{\color{#D61F06}2018}\binom {2018}k - \binom {2018}0 - \binom {2018}{2018}}2+1 \\ & = \frac {(1+1)^{2018} - 1 - 1}2+1 \\ & = 2^{2017} - 1 +1 \\ & = 2^{2017} \end{aligned}

We need to find 2 2017 m o d 10 2^{2017} \bmod 10 . Since gcd ( 2 , 10 ) 1 \gcd (2,10) \ne 1 , we have to consider the factors 2 and 5 of 10 separately using the Chinese remainder theorem .

Consider factor 2: A 2 2017 0 (mod 2) A \equiv 2^{2017} \equiv 0 \text{ (mod 2)}

Consider factor 5:

A 2 2017 m o d ϕ ( 5 ) (mod 5) Since gcd ( 2 , 5 ) = 1 , Euler’s theorem applies. 2 2017 m o d 4 (mod 5) Euler’s totient function ϕ ( 5 ) = 4 2 (mod 5) A 5 n + 2 where n is an integer. \begin{aligned} A & \equiv 2^{\color{#3D99F6}2017 \bmod \phi(5)} \text{ (mod 5)} & \small \color{#3D99F6} \text{Since }\gcd(2,5) = 1\text{, Euler's theorem applies.} \\ & \equiv 2^{\color{#3D99F6}2017 \bmod 4} \text{ (mod 5)} & \small \color{#3D99F6} \text{Euler's totient function }\phi (5) = 4 \\ & \equiv 2 \text{ (mod 5)} \\ \implies A & \equiv 5n + 2 & \small \color{#3D99F6} \text{where }n \text{ is an integer.} \end{aligned}

Then, we have:

5 n + 2 0 (mod 2) n 0 A 5 ( 0 ) + 2 2 (mod 10) \begin{aligned} 5n+2 & \equiv 0 \text{ (mod 2)} \\ \implies n & \equiv 0 \\ \implies A & \equiv 5(0) + 2 \equiv \boxed{2} \text{ (mod 10)} \end{aligned}

k = 1 2017 ( 2018 k ) = ( 2018 1 ) + ( 2018 2 ) + ( 2018 3 ) + . . . + ( 2018 2017 ) k = 1 2017 ( 2018 k ) = ( 2018 0 ) + ( 2018 1 ) + ( 2018 2 ) + ( 2018 3 ) + . . . + ( 2018 2017 ) + ( 2018 2018 ) ( 2018 0 ) ( 2018 2018 ) k = 1 2017 ( 2018 k ) = 2 2018 1 1 k = 1 2017 ( 2018 k ) = 2 2018 2 \displaystyle \sum_{k=1}^{2017}\binom{2018}{k} = \binom{2018}{1} + \binom {2018}{2} + \binom{2018}{3} + ... + \binom{2018}{2017} \\ \displaystyle \sum_{k=1}^{2017}\binom{2018}{k} = \binom{2018}{0} + \binom{2018}{1} + \binom {2018}{2} + \binom{2018}{3} + ... + \binom{2018}{2017} + \binom{2018}{2018} - \binom{2018}{0} - \binom{2018}{2018} \\ \displaystyle \sum_{k=1}^{2017}\binom{2018}{k}= 2^{2018} - 1 - 1 \\ \displaystyle \therefore \sum_{k=1}^{2017}\binom{2018}{k}= 2^{2018} - 2

So, we get

k = 1 2017 ( 2018 k ) 2 + 1 = 2 2018 2 2 + 1 k = 1 2017 ( 2018 k ) 2 + 1 = 2 ( 2 2017 1 ) 2 + 1 k = 1 2017 ( 2018 k ) 2 + 1 = 2 2017 1 + 1 k = 1 2017 ( 2018 k ) 2 + 1 = 2 2017 \frac{\displaystyle \sum_{k=1}^{2017}\binom{2018}{k}}{2} + 1 = \frac{2^{2018} - 2}{2} + 1 \\ \frac{\displaystyle \sum_{k=1}^{2017}\binom{2018}{k}}{2} + 1 = \frac{2(2^{2017} - 1)}{2} + 1 \\ \frac{\displaystyle \sum_{k=1}^{2017}\binom{2018}{k}}{2} + 1 = 2^{2017} - 1 + 1 \\ \therefore \frac{\displaystyle \sum_{k=1}^{2017}\binom{2018}{k}}{2} + 1 = 2^{2017}

2 1 2 m o d 10 2 2 4 m o d 10 2 3 8 m o d 10 2 4 6 m o d 10 2 5 2 m o d 10 2^1 \equiv 2 \mod 10 \\ 2^2 \equiv 4 \mod 10 \\ 2^3 \equiv 8 \mod 10 \\ 2^4 \equiv 6 \mod 10 \\ 2^5 \equiv 2 \mod 10

It appears that the pattern repeats after 4 patterns. So, 2017 1 m o d 4 2017 \equiv 1 \mod 4 . Then the unit number of 2 2017 2 ^ {2017} is the same as the unit number of 2 1 2 ^ {1} , is 2 2 .

Arjen Vreugdenhil
Dec 22, 2017

k = 1 2017 ( 2018 k ) = ( k = 0 2018 ( 2018 k ) ) 2 = 2 2018 2. \sum_{k=1}^{2017} \binom{2018}k = \left(\sum_{k = 0}^{2018}\ \binom{2018}k\right) - 2 = 2^{2018} - 2. Therefore A = 2 2018 2 2 + 1 = 2 2017 1 + 1 = 2 2017 . A = \frac{2^{2018} - 2}2 + 1 = 2^{2017} - 1 + 1 = 2^{2017}. Now the unit digit 2 n 2^n is { 1 n = 0 2 n 1 mod 4 4 n 2 mod 4 8 n 3 mod 4 6 n 0 mod 4 and n > 0 \begin{cases} 1 & n = 0 \\ 2 & n \equiv 1\ \text{mod}\ 4 \\ 4 & n \equiv 2\ \text{mod}\ 4 \\ 8 & n \equiv 3\ \text{mod}\ 4 \\ 6 & n \equiv 0\ \text{mod}\ 4\ \text{and}\ n > 0 \end{cases} Since 2017 1 2017 \equiv 1 mod 4, the unit digit is equal to 2 \boxed{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...