Unit fractions and powers of two

Algebra Level 1

1 2 1 + 1 2 2 + 1 2 3 + 1 2 4 + 1 2 5 + = ? \large \frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\cdots = ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Solution 1:

S = 1 2 1 + 1 2 2 + 1 2 3 + = 1 2 ( 1 + 1 2 1 + 1 2 2 + ) S = 1 2 ( 1 + S ) S 2 = 1 2 S = 1 \begin{aligned} S & = \frac 1{2^1} + \frac 1{2^2} + \frac 1{2^3} + \cdots \\ & = \frac 12 \left(1 + \frac 1{2^1} + \frac 1{2^2} + \cdots \right) \\ \implies S & = \frac 12 (1+S) \\ \frac S2 & = \frac 12 \\ \implies S & = \boxed{1} \end{aligned}

Solution 2:

S = 1 2 1 + 1 2 2 + 1 2 3 + = 1 2 ( 1 + 1 2 1 + 1 2 2 + ) Note that k = 0 r k = 1 1 r for r < 1 = 1 2 ( 1 1 1 2 ) = 1 \begin{aligned} S & = \frac 1{2^1} + \frac 1{2^2} + \frac 1{2^3} + \cdots \\ & = \frac 12 \color{#3D99F6} \left(1 + \frac 1{2^1} + \frac 1{2^2} + \cdots \right) & \small \color{#3D99F6} \text{Note that }\sum_{k=0}^\infty r^k = \frac 1{1-r} \text{ for }|r| < 1 \\ & = \frac 12 \color{#3D99F6} \left(\frac 1{1-\frac 12} \right) \\ & = \boxed{1} \end{aligned}

For r < 1 |r|<1

Atul Kumar Ashish - 3 years, 6 months ago

Log in to reply

Thanks, I have amended it.

Chew-Seong Cheong - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...