Unit vectors

Geometry Level 3

a , b , c , d \overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d} are unit vectors such that a b \overrightarrow{a} \perp \overrightarrow{b} , c d = 3 |\overrightarrow{c}-\overrightarrow{d}|=\sqrt{3} . Vector p = 2 2 ( cos 2 θ a + sin 2 θ b ) \overrightarrow{p}=2\sqrt{2}(\cos^2 \theta \cdot \overrightarrow{a}+\sin^2 \theta \cdot \overrightarrow{b}) where θ R \theta \in \mathbb R .

What is the minimum value of ( c p ) ( d p ) (\overrightarrow{c}-\overrightarrow{p})\cdot(\overrightarrow{d}-\overrightarrow{p}) ?

Note: n |\overrightarrow{n}| notes the length of the vector on the Euclidean plane. i.e. The Euclidean norm.

1 2 \dfrac{1}{2} 2 2 1 2\sqrt{2}-1 1 1 3 2 \dfrac{3}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...