Unitary Divisors

We define a unitary divisor of n n to be a divisor d d such that gcd ( d , n d ) = 1 \gcd \left(d,\dfrac{n}{d}\right)=1 . Let S S be the sum of all unitary divisors of 201 6 2016 2016^{2016} . Determine the remainder when S S is divided by 1000.

Notation : gcd ( ) \gcd(\cdot) denotes the greatest common divisor function.


The answer is 468.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Sep 20, 2016

Since 2016 = 2 5 × 3 2 × 7 2016 = 2^5 \times 3^2 \times 7 , we have 201 6 2016 = 2 10080 × 3 4032 × 7 2016 2016^{2016} = 2^{10080} \times 3^{4032} \times 7^{2016} . Thus the unitary divisors are 1 , 2 10080 , 3 4032 , 7 2016 , 2 10080 × 3 4032 , 2 10080 × 7 2016 , 3 4032 × 7 2016 , 2 10080 × 3 4032 × 7 2016 1, \hspace{0.5cm} 2^{10080},\hspace{0.5cm} 3^{4032}, \hspace{0.5cm} 7^{2016}, \hspace{0.5cm} 2^{10080}\times3^{4032}, \hspace{0.5cm} 2^{10080} \times 7^{2016}, \hspace{0.5cm} 3^{4032} \times 7^{2016}, \hspace{0.5cm} 2^{10080}\times3^{4032}\times7^{2016} and hence S = ( 1 + 2 10080 ) ( 1 + 3 4032 ) ( 1 + 7 2016 ) S \; = \; \big(1 + 2^{10080}\big)\big(1 + 3^{4032}\big)\big(1 + 7^{2016}\big) We have 2 3 0 ( m o d 8 ) 2^3 \equiv 0 \pmod{8} and 3 2 7 2 1 ( m o d 8 ) 3^2 \equiv 7^2 \equiv 1 \pmod{8} , so that 2 10080 0 ( m o d 8 ) 2^{10080} \equiv 0 \pmod{8} and 3 4032 7 2016 1 ( m o d 8 ) 3^{4032} \equiv 7^{2016} \equiv 1 \pmod{8} . Since 2 100 3 100 7 20 1 ( m o d 125 ) 2^{100} \equiv 3^{100} \equiv 7^{20} \equiv 1 \pmod{125} , we deduce that 2 10080 2 80 51 3 4032 3 32 91 7 2016 7 16 101 ( m o d 125 ) 2^{10080} \equiv 2^{80} \equiv 51 \hspace{1cm} 3^{4032} \equiv 3^{32} \equiv 91 \hspace{1cm} 7^{2016} \equiv 7^{16} \equiv 101 \hspace{2cm} \pmod{125} By the Chinese Remainder Theorem, 2 10080 176 3 4032 841 7 2016 601 ( m o d 1000 ) 2^{10080} \equiv 176 \hspace{1cm} 3^{4032} \equiv 841 \hspace{1cm} 7^{2016} \equiv 601 \hspace{2cm} \pmod{1000} and hence S 177 × 842 × 602 468 ( m o d 1000 ) S \equiv 177 \times 842 \times 602 \equiv \boxed{468} \hspace{1cm} \pmod{1000}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...