Units digit

Find the units digit of 2 4 2017 × 3 6 2017 × 1 7 2017 24^{2017}\times36^{2017}\times17^{2017}


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Deva Craig
Jul 18, 2017

24 2017 ^{2017} × \times 36 2017 ^{2017} × \times 17 2017 ^{2017} = (24 × \times 36 × \times 17) 2017 ^{2017} = 14688 2017 ^{2017}

14688 (mod 10) = 8

2017 (mod 8) = 1

8 1 ^{1} = 8

Thank you for sharing your solution. Nice.

Hana Wehbi - 3 years, 10 months ago
Chew-Seong Cheong
Jul 11, 2017

Relevant wiki: Euler's Theorem

2 4 2017 × 3 6 2017 × 1 7 2017 ( 24 × 36 × 17 ) 2017 (mod 10) [ ( 20 + 4 ) ( 30 + 6 ) ( 10 + 7 ) ] 2017 (mod 10) [ 4 × 6 × 7 ] 2017 (mod 10) [ 24 × 7 ] 2017 (mod 10) [ 4 × 7 ] 2017 (mod 10) Note that 4 n mod 10 = { 4 if n is odd. 6 if n is even. 4 × 7 2017 mod ϕ ( 10 ) (mod 10) Since gcd ( 7 , 10 ) = 1 , Euler’s theorem applies. 4 × 7 2017 mod 4 (mod 10) Euler’s totient function ϕ ( 10 ) = 4 4 × 7 1 (mod 10) 28 8 (mod 10) \begin{aligned} 24^{2017}\times 36^{2017}\times 17^{2017} & \equiv (24\times 36\times 17)^{2017} \text{ (mod 10)} \\ & \equiv [(20+4)(30 + 6)(10+7)]^{2017} \text{ (mod 10)} \\ & \equiv [4\times 6 \times 7]^{2017} \text{ (mod 10)} \\ & \equiv [24 \times 7]^{2017} \text{ (mod 10)} \\ & \equiv [{\color{#3D99F6}4} \times 7]^{2017} \text{ (mod 10)} & \small \color{#3D99F6} \text{Note that }4^n \text{ mod }10 = \begin{cases} 4 & \text{if }n \text{ is odd.} \\ 6 & \text{if }n \text{ is even.} \end{cases} \\ & \equiv {\color{#3D99F6}4} \times 7^{\color{#D61F06} 2017 \text{ mod }\phi(10)} \text{ (mod 10)} & \small \color{#D61F06} \text{Since }\gcd (7, 10) = 1 \text{, Euler's theorem applies.} \\ & \equiv 4 \times 7^{\color{#D61F06} 2017 \text{ mod }4} \text{ (mod 10)} & \small \color{#D61F06} \text{Euler's totient function }\phi (10) = 4 \\ & \equiv 4 \times 7^{\color{#D61F06} 1} \text{ (mod 10)} \\ & \equiv 28 \equiv \boxed{8} \text{ (mod 10)} \end{aligned}

Thank you for sharing the solution.

Hana Wehbi - 3 years, 11 months ago
Zach Abueg
Jul 11, 2017

2 4 2017 × 3 6 2017 × 1 7 2017 ( m o d 10 ) ( 2 4 × 3 6 × 1 7 ) 2017 ( m o d 10 ) 8 2017 mod 4 ( m o d 10 ) 8 1 ( m o d 10 ) 8 ( m o d 10 ) \begin{aligned} 24^{2017} \times 36^{2017} \times 17^{2017} \pmod{10} & \equiv \left(2{\color{#3D99F6}{4}} \times 3{\color{#3D99F6}{6}} \times 1{\color{#3D99F6}{7}}\right)^{2017} \pmod{10} \\ & \equiv {\color{#3D99F6}{8}}^{{\color{#D61F06}{2017 \ \text{mod} \ 4}}} \pmod{10} \\ & \equiv 8^{\color{#D61F06}{1}} \pmod{10} \\ & \equiv 8 \pmod{10} \end{aligned}

Thank you for sharing your solution.

Hana Wehbi - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...