Unit's Digit?

What is the unit digit of 1 3 17 + 1 7 13 = ? \large 13^{17}+17^{13}=?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 31, 2017

Method 1 -- by Binomial Expansion

1 3 17 + 1 7 13 ( 10 + 3 ) 17 + ( 10 + 7 ) 13 (mod 10) 3 17 + 7 13 (mod 10) 3 ( 9 8 ) + 7 ( 4 9 6 ) (mod 10) 3 ( 10 1 ) 8 + 7 ( 50 1 ) 6 (mod 10) 3 ( 1 ) 8 + 7 ( 1 ) 6 (mod 10) 3 + 7 (mod 10) 0 (mod 10) \begin{aligned} 13^{17} + 17^{13} & \equiv (10+3)^{17} + (10+7)^{13} \text{ (mod 10)} \\ & \equiv 3^{17} + 7^{13} \text{ (mod 10)} \\ & \equiv 3(9^8) + 7(49^6) \text{ (mod 10)} \\ & \equiv 3(10-1)^8 + 7(50-1)^6 \text{ (mod 10)} \\ & \equiv 3(-1)^8 + 7(-1)^6 \text{ (mod 10)} \\ & \equiv 3 + 7 \text{ (mod 10)} \\ & \equiv \boxed{0} \text{ (mod 10)} \end{aligned}

Method 2 -- by Euler's Theorem : Since 13, 17 and 10 are coprime integers, we can use Euler's theorem. We note that Euler's totient function ϕ ( 10 ) = 10 × 1 2 × 4 5 = 4 \phi(10) = 10 \times \dfrac 12 \times \dfrac 45 = 4 .

1 3 17 + 1 7 13 1 3 17 mod ϕ ( 10 ) + 1 7 13 mod ϕ ( 10 ) (mod 10) 1 3 17 mod 4 + 1 7 13 mod 4 (mod 10) 1 3 1 + 1 7 1 (mod 10) 0 (mod 10) \begin{aligned} 13^{17} + 17^{13} & \equiv 13^{17 \text{ mod }\phi(10)} + 17^{13 \text{ mod }\phi(10)} \text{ (mod 10)} \\ & \equiv 13^{17 \text{ mod }4} + 17^{13 \text{ mod }4} \text{ (mod 10)} \\ & \equiv 13^1 + 17^1 \text{ (mod 10)} \\ & \equiv \boxed{0} \text{ (mod 10)} \end{aligned}

Thank you. Nice as usual.

Hana Wehbi - 3 years, 10 months ago

I used the cyclic app are ancestry of the last number: for 13^n it has a as last when n = 1 mod 4. 17^n has a 7 for n = 1 mod 4, so 3 + 7 =10. Hence the unit digit is 0.

I agree with you. Another logical idea. Thank you.

Hana Wehbi - 3 years, 10 months ago
Hana Wehbi
Jul 31, 2017

( 1 3 17 + 1 7 13 ) m o d 10 = ( 3 17 + 7 13 ) m o d 10 = 3 + 7 = 10 (13^{17}+17^{13})\mod 10= (3^{17}+7^{13 })\mod 10 = 3 + 7= 10 . Therefore, the units digit is 0 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...