Units digit

What is the units digit of 6 15 7 4 9 3 6^{15} - 7^4 - 9^3 ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Oliver Papillo
Aug 8, 2017

Exponential Residues:

6 n 6 6 15 m o d 10 6^n \cong 6 \cong 6^{15} \mod 10

7 4 n 1 7 4 m o d 10 7^{4n} \cong 1 \cong 7^4 \mod 10

9 2 n + 1 9 9 3 m o d 10 9^{2n+1} \cong 9 \cong 9^3 \mod 10

6 15 7 4 9 3 6 1 9 6 m o d 10 6^{15} - 7^4 - 9^3 \cong 6 - 1 - 9 \cong 6 \mod 10

You can use \mod 10.

Which appear as m o d 10 \mod10

Munem Shahriar - 3 years, 10 months ago

Log in to reply

Thanks for the Help!

Oliver Papillo - 3 years, 10 months ago

6 15 7 4 9 3 6 ( 49 ) 2 ( 10 1 ) 3 (mod 10) Units digit of powers of 6 is always 6. 6 ( 50 1 ) 2 ( 1 ) 3 (mod 10) 6 ( 1 ) 2 ( 1 ) (mod 10) 6 1 + 1 (mod 10) 6 (mod 10) \begin{aligned} {\color{#3D99F6}6^{15}}-7^4 - 9^3 & \equiv {\color{#3D99F6}6}-(49)^2 - (10-1)^3 \text{ (mod 10)} & \small \color{#3D99F6} \text{Units digit of powers of 6 is always 6.} \\ & \equiv 6 - (50-1)^2 - (-1)^3 \text{ (mod 10)} \\ & \equiv 6 - (-1)^2 - (-1) \text{ (mod 10)}\\ & \equiv 6 - 1 +1 \text{ (mod 10)} \\ & \equiv \boxed{6} \text{ (mod 10)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...