Unit's Digit=?

Algebra Level 3

If x x is a positive integer, what is the unit digit of ( 24 ) 5 + 2 x ( 36 ) 6 ( 17 ) 3 = ? (24)^{5+2x}(36)^6(17)^3=?

4 8 2 0 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Aug 19, 2017

2 4 5 + 2 x 3 6 6 1 7 3 57 6 x 4 5 6 6 7 3 6 x 1024 6 6 343 6 4 6 3 c c c c c c c c c c powers of 6 always and with a 6 (see Note) 24 18 4 8 32 2 m o d 10 \begin{aligned} 24^{5+2x}\cdot 36^6\cdot 17^3&\equiv 576^x\cdot 4^5\cdot 6^6\cdot 7^3\\ &\equiv 6^x\cdot 1024\cdot 6^6\cdot 343\\ &\equiv 6\cdot 4\cdot 6 \cdot 3 \phantom{cccccccccc}\color{#3D99F6}\text{powers of 6 always and with a 6 (see Note)}\\ &\equiv 24\cdot 18\\ &\equiv 4\cdot 8\\ &\equiv 32\equiv \boxed{2}\mod 10 \end{aligned}


Note:

Let x x be a positive integer

{ 6 x 0 x 0 m o d 2 6 x 1 x 1 m o d 5 \begin{cases} 6^x\equiv 0^x\equiv 0 \mod 2\\ 6^x\equiv 1^x\equiv 1 \mod 5 \end{cases}

By the CRT

6 x 6 m o d 10 6^x\equiv 6\mod 10

Nice solution, but there is an easier way to tackle this. Let's look at 2 4 5 + 2 x 24^{5+2x} , we know that powers of 4 4 ends with 4 4 if the power is odd and 6 6 if the power is even.

Since 5 + 2 x 5+2x is odd \implies the unit digit of 2 4 5 + 2 x 24^{5+2x} is 4 4

Powers of 6 6 always ends with 6 6 and finally 7 3 = 343 4 × 6 × 3 = 72 7^3=343\implies 4\times 6 \times 3 = 72 \implies the unit

digit is 2 2 .

Hana Wehbi - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...