7 2 3 m = 1 ∑ 7 2 a ≥ 1 ∑ t ≥ 1 ∑ h ≥ 1 ∑ ( a t h ) 2 ω m a t h = C A π B
The equation above holds true where ω = e 2 i π / 7 2 . Find the value of A + B + C
Bonus : Generalise for
k s b = 1 ∑ k a 1 ≥ 1 ∑ a 2 ≥ 1 ∑ ⋯ a n ≥ 1 ∑ ( a 1 a 2 . . . a n ) s w b a 1 a 2 ⋯ a n ,
where w = e 2 i π / k .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Here is the generalization. Assume that s > 1 throughout.
If ω = e k 2 π i , then ω j = 1 if and only if k ∣ ∣ j , and hence b = 1 ∑ k ω b j = { k 0 k ∣ ∣ j o . w . Thus S k = = = = k s b = 1 ∑ k a 1 ≥ 1 ∑ a 2 ≥ 1 ∑ ⋯ a n ≥ 1 ∑ ( a 1 a 2 ⋯ a n ) s ω b a 1 a 2 ⋯ a n k s + 1 k ∣ ∣ a 1 a 2 ⋯ a n a 1 , a 2 , … , a n ≥ 1 ∑ ( a 1 a 2 ⋯ a n ) s 1 k N ≥ 1 ∑ ( a 1 a 2 ⋯ a n ) s ∣ ∣ { ( a 1 , a 2 , … , a n ) ∈ N n ∣ ∣ a 1 a 2 ⋯ a n = k N } ∣ ∣ k N s ( 1 ⋆ , n ) ( k N ) where 1 ⋆ , n is the n -fold Dirichlet convolution of the constant function 1 with itself (so that, for instance, 1 ⋆ , 2 = σ 0 is the ``number of divisors" function, and 1 ⋆ , 3 is what was referred to previously as 1 ⋆ 1 ⋆ 1 ).
A simple induction shows us that ( 1 ⋆ , n ) ( p a ) = ( a a + n − 1 ) for any prime p and any integers n ≥ 1 and a ≥ 0 , and hence a ≥ 0 ∑ p a s ( 1 ⋆ , n ) ( p a ) = a ≥ 0 ∑ ( a a + n − 1 ) ( p − s ) a = ( 1 − p − s ) − n for all primes p and all integers n ≥ 1 .
Suppose that the integer k has prime factorization k = p 1 α 1 p 2 α 2 ⋯ p m α m for primes p 1 , p 2 , … , p m and positive integers α 1 , α 2 , … , α m . Let S ( k ) be the set of positive integers which are coprime to k . Then ζ ( s ) n = = = = N ≥ 1 ∑ N s ( 1 ⋆ , n ) ( N ) β 1 ≥ 0 ∑ β 2 ≥ 0 ∑ ⋯ β m ≥ 0 ∑ c ∈ S ( k ) ∑ p 1 β 1 s p 2 β 2 s ⋯ p m β m s c s ( 1 ⋆ , n ) ( p 1 β 1 p 2 β 2 ⋯ p m β m c ) j = 1 ∏ m ⎝ ⎛ β ≥ 0 ∑ p j β s ( 1 ⋆ , n ) ( p j β ) ⎠ ⎞ × ⎝ ⎛ c ∈ S ( k ) ∑ c s ( 1 ⋆ , n ) ( c ) ⎠ ⎞ ( j = 1 ∏ m ( 1 − p j − s ) − n ) × ⎝ ⎛ c ∈ S ( k ) ∑ c s ( 1 ⋆ , n ) ( c ) ⎠ ⎞ We also note the identity ( 1 − x ) n a ≥ 0 ∑ ( a + b a + b + n − 1 ) x a + b = b ( b b + n − 1 ) B x ( b , n ) ∣ x ∣ < 1 for integers b , n ≥ 1 , where B x ( b , n ) is the incomplete Beta function. Thus S k = = = = = = = k N ≥ 1 ∑ N s ( 1 ⋆ , n ) ( k N ) k β 1 ≥ 0 ∑ β 2 ≥ 0 ∑ ⋯ β m ≥ 0 ∑ c ∈ S ( k ) ∑ p 1 β 1 s p 2 β 2 s ⋯ p m β m s c s ( 1 ⋆ , n ) ( p 1 α 1 + β 1 p 2 α 2 + β 2 ⋯ p m α m + β m c ) k j = 1 ∏ m ⎝ ⎛ β ≥ 0 ∑ p j β s ( 1 ⋆ , n ) ( p j α j + β ) ⎠ ⎞ × ⎝ ⎛ c ∈ S ( k ) ∑ c s ( 1 ⋆ , n ) ( c ) ⎠ ⎞ k j = 1 ∏ m ⎣ ⎡ β ≥ 0 ∑ ( α j + β α j + β + n − 1 ) ( p j − s ) β ⎦ ⎤ × ⎝ ⎛ c ∈ S ( k ) ∑ c s ( 1 ⋆ , n ) ( c ) ⎠ ⎞ k 1 + s j = 1 ∏ m ⎣ ⎡ β ≥ 0 ∑ ( α j + β α j + β + n − 1 ) ( p j − s ) α j + β ⎦ ⎤ × ⎝ ⎛ c ∈ S ( k ) ∑ c s ( 1 ⋆ , n ) ( c ) ⎠ ⎞ k 1 + s ζ ( s ) n j = 1 ∏ m ⎣ ⎡ ( 1 − p j − s ) n β ≥ 0 ∑ ( α j + β α j + β + n − 1 ) ( p j − s ) α j + β ⎦ ⎤ k 1 + s ζ ( s ) n j = 1 ∏ m [ α j ( α j α j + n − 1 ) B p j − s ( α j , n ) ] .
Hi @Mark Hennings we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.
Problem Loading...
Note Loading...
Set Loading...
To begin with, m = 1 ∑ 7 2 ω j m = { 7 2 0 7 2 ∣ ∣ j o . w . and hence the sum is S = = 7 2 3 m = 1 ∑ 7 2 a ≥ 1 ∑ b ≥ 1 ∑ c ≥ 1 ∑ ( a b c ) 2 ω m a b c = 7 2 4 7 2 ∣ ∣ a b c a , b , c ≥ 1 ∑ ( a b c ) 2 1 7 2 2 N ≥ 1 ∑ N 2 X ( N ) where X ( N ) = ∣ ∣ { ( a , b , c ) ∈ N 3 ∣ ∣ a b c = 7 2 N } ∣ ∣ = ( 1 ⋆ σ 0 ) ( 7 2 N ) , where σ 0 ( n ) is the number of divisors of n and ⋆ is the Dirichlet convolution, so that X ( N ) = ( 1 ⋆ 1 ⋆ 1 ) ( 7 2 N ) . Now the function 1 ⋆ 1 ⋆ 1 is multiplicative. If we let S be the set of positive integers that are coprime to 6 , then ζ ( 2 ) 3 = = = = N ≥ 1 ∑ N 2 ( 1 ⋆ 1 ⋆ 1 ) ( N ) = a , b ≥ 0 ∑ c ∈ S ∑ 2 2 a 3 2 b c 2 ( 1 ⋆ 1 ⋆ 1 ) ( 2 a 3 b c ) ( a ≥ 0 ∑ 2 2 a ( 1 ⋆ 1 ⋆ 1 ) ( 2 a ) ) ( b ≥ 0 ∑ 3 3 b ( 1 ⋆ 1 ⋆ 1 ) ( 3 b ) ) ( c ∈ S ∑ c 2 ( 1 ⋆ 1 ⋆ 1 ) ( c ) ) ( a ≥ 0 ∑ 2 2 a 2 1 ( a + 1 ) ( a + 2 ) ) ( b ≥ 0 ∑ 3 3 b 2 1 ( b + 1 ) ( b + 2 ) ) ( c ∈ S ∑ c 2 ( 1 ⋆ 1 ⋆ 1 ) ( c ) ) ( 1 − 4 1 ) − 3 ( 1 − 9 1 ) − 3 ( c ∈ S ∑ c 2 ( 1 ⋆ 1 ⋆ 1 ) ( c ) ) . Similarly S = = = = = 7 2 2 N ≥ 1 ∑ N 2 ( 1 ⋆ 1 ⋆ 1 ) ( 7 2 N ) 7 2 2 a , b ≥ 0 ∑ c ∈ S ∑ 2 2 a 3 2 b c 2 ( 1 ⋆ 1 ⋆ 1 ) ( 2 a + 3 3 b + 2 c ) 7 2 2 ( a ≥ 0 ∑ 2 2 a ( 1 ⋆ 1 ⋆ 1 ) ( 2 a + 3 ) ) ( b ≥ 0 ∑ 3 2 b ( 1 ⋆ 1 ⋆ 1 ) ( 3 b + 2 ) ) ( c ∈ S ∑ c 2 ( 1 ⋆ 1 ⋆ 1 ) ( c ) ) 7 2 2 ( a ≥ 0 ∑ 2 2 a 2 1 ( a + 4 ) ( a + 5 ) ) ( b ≥ 0 ∑ 3 2 b 2 1 ( b + 3 ) ( b + 4 ) ) ( c ∈ S ∑ c 2 ( 1 ⋆ 1 ⋆ 1 ) ( c ) ) 7 2 2 f 3 ( 4 1 ) f 2 ( 9 1 ) ( c ∈ S ∑ c 2 ( 1 ⋆ 1 ⋆ 1 ) ( c ) ) where f 3 ( x ) f 2 ( x ) = = a ≥ 0 ∑ 2 1 ( a + 4 ) ( a + 5 ) x a = ( 1 0 − 1 5 x + 6 x 2 ) ( 1 − x ) − 3 b ≥ 0 ∑ 2 1 ( b + 3 ) ( b + 4 ) x b = ( 6 − 8 x + 3 x 2 ) ( 1 − x ) − 3 and hence S = = 7 2 2 ( 1 0 − 4 1 5 + 1 6 6 ) ( 6 − 9 8 + 8 1 3 ) ζ ( 2 ) 3 9 7 3 6 7 π 6 making the answer 7 3 6 7 + 6 + 9 = 7 3 8 2 .