Unknown ABD

Calculus Level pending

d x 2 3 x x 2 = arcsin ( A x + B D ) + C \large \int \frac {dx}{\sqrt {2-3x-x^2}} = \arcsin \left(\frac {Ax+B}{\sqrt D} \right) +C

The equation above holds true for positive integers A A , B B and D D with D D being square-free, and C C as the arbitrary constant of integration . Find A + B + D A+B+D .

25 20 21 22 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = d x 2 3 x x 2 = d x 17 4 ( x + 3 2 ) 2 = d x 17 2 1 ( 2 x + 3 17 ) 2 Let sin θ = 2 x + 3 17 , cos θ d θ = 2 17 d x = cos θ d θ 1 sin 2 θ = cos θ d θ cos θ = 1 d θ = θ + C = arcsin ( 2 x + 3 17 ) + C \begin{aligned} I & = \int \frac {dx}{\sqrt{2-3x-x^2}} \\ & = \int \frac {dx}{\sqrt{\frac {17}4 - \left(x+\frac 32 \right)^2}} \\ & = \int \frac {dx}{\frac {\sqrt{17}}2 \sqrt{1 - \left({\color{#3D99F6}\frac {2x+3}{\sqrt{17}}} \right)^2}} & \small \color{#3D99F6} \text{Let } \sin \theta = \frac {2x+3}{\sqrt{17}}, \ \cos \theta \ d \theta = \frac 2{\sqrt{17}} dx \\ & = \int \frac {\cos \theta \ d\theta}{\sqrt{1 - {\color{#3D99F6}\sin^2 \theta} }} \\ & = \int \frac {\cos \theta \ d\theta}{\cos \theta} \\ & = \int 1 \ d\theta \\ & = \theta + C \\ & = \arcsin \left(\frac {2x+3}{\sqrt{17}}\right) + C \end{aligned}

A + B + D = 2 + 3 + 17 = 22 \implies A+B+D = 2+3+17 = \boxed{22}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...