Unknown Number of Digits

For integer values of k 0 k \geq 0 , is the following expression an integer?

1 111111...111111 2 k ones 1 ÷ 1 000...000 k zeroes 1 1\overbrace{111111...111111}^{2k \text{ ones}}1 \div 1\overbrace{000...000}^{k\text{ zeroes}}1

Note: the left number has two ones that are not covered with the brace, making the total number of digits in the left number 2 k + 2 2k+2 .

Sometimes an integer Never an integer Always an integer

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zane Gates
Jun 7, 2019

Note the following expansions to be used later:

( 11...11 k = 1 0 k 1 + 1 0 k 2 + 1 0 k 3 . . . + 1 0 0 (\overbrace{11...11}^{k} = 10^{k-1} + 10^{k-2} + 10^{k-3}... + 10^{0}

1 00...00 k 1 = 1 × 1 0 k + 1 1\overbrace{00...00}^{k}1 = 1 \times 10^{k} + 1

When k = 0 k=0 , the value of 11 ÷ 11 = 1 11 \div 11 = 1 is an integer. Then, for integers k 1 k \geq 1 :

1 00...00 k 1 × 11...11 k = 1 0 k × ( 1 0 k 1 + . . . + 1 0 0 ) + 1 × ( 1 0 k 1 + . . . + 1 0 0 ) 1\overbrace{00...00}^{k}1 \times \overbrace{11...11}^{k} = 10^{k} \times (10^{k-1} + ... + 10^{0}) + 1 \times (10^{k-1} + ... + 10^{0}) = 1 0 2 k 1 + 1 0 2 k 2 + 1 0 2 k 3 + . . . + 1 0 k + 1 0 k 1 + 1 0 k 2 + 1 0 k 3 + . . . + 1 0 0 = 10^{2k-1} + 10^{2k-2} + 10^{2k-3} + ... + 10^{k} + 10^{k-1} + 10^{k-2} + 10^{k-3} + ... + 10^{0} = 1 11...11 2 k 1 = 1\overbrace{11...11}^{2k}1

1 11...11 2 k 1 ÷ 1 00...00 k 1 = 11...11 k \therefore 1\overbrace{11...11}^{2k}1 \div 1\overbrace{00...00}^{k}1 = \overbrace{11...11}^{k}

Together, this proves that the value is an integer for all integer values of $k \geq 0$. The answer is always an integer .

Note that 1 11 11 2 k 1 = 11 11 2 k + 2 = 99 99 2 k + 2 9 = 1 0 2 k + 2 1 9 = ( 1 0 k + 1 + 1 ) ( 1 0 k + 1 1 ) 9 1\overbrace{11\cdots 11}^{2k}1=\overbrace{11\cdots 11}^{2k+2} = \frac{\overbrace{99\cdots 99}^{2k+2}}{9}=\frac{10^{2k+2}-1}{9}=\frac{(10^{k+1}+1)(10^{k+1}-1)}{9} and

1 00 00 k 1 = 1 00 00 k + 1 + 1 = 1 0 k + 1 + 1 1\overbrace{00\cdots 00}^{k} 1 =1\overbrace{00\cdots 00}^{k+1}+ 1 = 10^{k+1}+1

Thus the problem becomes

( 1 0 k + 1 + 1 ) ( 1 0 k + 1 1 ) 9 × 1 1 0 k + 1 + 1 = 1 0 k + 1 1 9 \frac{(10^{k+1}+1)(10^{k+1}-1)}{9} \times \frac{1}{10^{k+1}+1} = \frac{10^{k+1}-1}{9}

Noting the way the first term was decomposed, it can be easily deduced that

1 0 k + 1 1 9 = 11 11 k + 1 \frac{10^{k+1}-1}{9}=\overbrace{11\cdots 11}^{k+1}

Hence, the result is always an integer

Sir, can you please post a solution for this: https://brilliant.org/problems/confusing-question-no-way-out/

Jake Tricole - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...