Let A 1 , A 2 , A 3 , … , A n be the vertices of a regular n -sided polygon inscribed in a circle of radius R . If ( A 1 A 2 ) 2 + ( A 1 A 3 ) 2 + ⋯ + ( A 1 A n ) 2 = 1 4 R 2 , find the number of sides of the polygon.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
F o r a n − s i d e d r e g u l a r p o l y g o n , a n g l e X = n 1 8 0 o . A 1 A 2 , . . . . . . . A 1 A r . . . A 1 A n are all the bases of isosceles triangles with equal sides R-R and 2*(r-1)*X as vertex angle. F o r A 1 A r , t h e v e r t e x t a n g l e i s = 2 ∗ ( r − 1 ) ∗ X . ∴ A 1 A r = 2 ∗ R ∗ S i n { ( r − 1 ) X } . ⟹ { A 1 A r } 2 = 4 ∗ R 2 S i n 2 { ( r − 1 ) X } . ∴ f o r a n − g o n r = 2 ∑ n 4 ∗ R 2 S i n 2 { ( r − 1 ) ∗ X } . F o r n = 5 , X = 5 1 8 0 o = 3 6 o . r = 2 ∑ 5 4 ∗ R 2 S i n 2 { ( r − 1 ) ∗ 3 6 o } = 1 0 ∗ R 2 F o r n = 7 , X = 7 1 8 0 o , n − 1 = 6 . r = 2 ∑ 7 4 ∗ R 2 S i n 2 { ( r − 1 ) ∗ 7 1 8 0 o } = 1 4 ∗ R 2 n = 7 I n t r e s t i n g o b s e r v a t i o n . r = 2 ∑ n { A 1 A r } 2 = 2 ∗ n ∗ R 2 f o r n − g o n .
Nice Observation :D
Problem Loading...
Note Loading...
Set Loading...
Note A 1 A k is the base of an isosceles triangle with two sides of length R and angle n 2 ( k − 1 ) π .
Then A 1 A k 2 = R 2 + R 2 − 2 R ⋅ R cos ( n 2 ( k − 1 ) π ) = 2 R 2 ( 1 − cos ( n 2 ( k − 1 ) π ) ) . Therefore,
k = 2 ∑ n A 1 A k 2 = k = 2 ∑ n 2 R 2 ( 1 − cos ( n 2 ( k − 1 ) π ) )
= 2 R 2 ( n − 1 − k = 2 ∑ n cos ( n 2 π ( k − 1 ) ) ) .
Recall that 1 , cos ( n 2 π ) , cos ( n 4 π ) , … , cos ( n 2 ( n − 1 ) π ) are the real parts of the n -th roots of unity. Therefore, k = 1 ∑ n cos ( n 2 π ( k − 1 ) ) = 0 , so k = 2 ∑ n cos ( n 2 π ( k − 1 ) ) = − cos ( 0 ) = − 1 .
Thus, k = 2 ∑ n A 1 A k 2 = 2 R 2 ( n − 1 − ( − 1 ) ) = 2 n R 2 . Then since 2 n R 2 = 1 4 R 2 , n = 7 .