Unknown polygon!

Geometry Level 4

Let A 1 , A 2 , A 3 , , A n A_1 , A_2,A_3, \ldots, A_n be the vertices of a regular n n -sided polygon inscribed in a circle of radius R R . If ( A 1 A 2 ) 2 + ( A 1 A 3 ) 2 + + ( A 1 A n ) 2 = 14 R 2 , (A_1 A_2)^2 + (A_1 A_3)^2 +\cdots + ( A_1 A_n) ^2 = 14R^2, find the number of sides of the polygon.

11 5 8 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Maggie Miller
Jul 22, 2015

Note A 1 A k \overline{A_1A_k} is the base of an isosceles triangle with two sides of length R R and angle 2 ( k 1 ) π n \frac{2(k-1)\pi}{n} .

Then A 1 A k 2 = R 2 + R 2 2 R R cos ( 2 ( k 1 ) π n ) = 2 R 2 ( 1 cos ( 2 ( k 1 ) π n ) ) \overline{A_1A_k}^2=R^2+R^2-2R\cdot R\cos\left(\frac{2(k-1)\pi}{n}\right)=2R^2\left(1-\cos\left(\frac{2(k-1)\pi}{n}\right)\right) . Therefore,

k = 2 n A 1 A k 2 = k = 2 n 2 R 2 ( 1 cos ( 2 ( k 1 ) π n ) ) \displaystyle\sum_{k=2}^n\overline{A_1A_k}^2=\sum_{k=2}^n2R^2\left(1-\cos\left(\frac{2(k-1)\pi}{n}\right)\right)

= 2 R 2 ( n 1 k = 2 n cos ( 2 π ( k 1 ) n ) ) \displaystyle=2R^2\left(n-1-\sum_{k=2}^{n}\cos\left(\frac{2\pi (k-1)}{n}\right)\right) .

Recall that 1 , cos ( 2 π n ) , cos ( 4 π n ) , , cos ( 2 ( n 1 ) π n ) 1,\cos\left(\frac{2\pi}{n}\right),\cos\left(\frac{4\pi}{n}\right),\ldots,\cos\left(\frac{2(n-1)\pi}{n}\right) are the real parts of the n n -th roots of unity. Therefore, k = 1 n cos ( 2 π ( k 1 ) n ) = 0 \displaystyle\sum_{k=1}^n\cos\left(\frac{2\pi(k-1)}{n}\right)=0 , so k = 2 n cos ( 2 π ( k 1 ) n ) = cos ( 0 ) = 1 \displaystyle\sum_{k=2}^n\cos\left(\frac{2\pi(k-1)}{n}\right)=-\cos(0)=-1 .

Thus, k = 2 n A 1 A k 2 = 2 R 2 ( n 1 ( 1 ) ) = 2 n R 2 \displaystyle\sum_{k=2}^n\overline{A_1A_k}^2=2R^2(n-1-(-1))=2nR^2 . Then since 2 n R 2 = 14 R 2 2nR^2=14R^2 , n = 7 n=\boxed{7} .

F o r a n s i d e d r e g u l a r p o l y g o n , a n g l e X = 18 0 o n . A 1 A 2 , . . . . . . . A 1 A r . . . A 1 A n are all the bases of isosceles triangles with equal sides R-R and 2*(r-1)*X as vertex angle. F o r A 1 A r , t h e v e r t e x t a n g l e i s = 2 ( r 1 ) X . A 1 A r = 2 R S i n { ( r 1 ) X } . { A 1 A r } 2 = 4 R 2 S i n 2 { ( r 1 ) X } . f o r a n g o n r = 2 n 4 R 2 S i n 2 { ( r 1 ) X } . F o r n = 5 , X = 18 0 o 5 = 3 6 o . r = 2 5 4 R 2 S i n 2 { ( r 1 ) 3 6 o } = 10 R 2 F o r n = 7 , X = 18 0 o 7 , n 1 = 6. r = 2 7 4 R 2 S i n 2 { ( r 1 ) 18 0 o 7 } = 14 R 2 n = 7 For~a~n\!\!-\!\!sided~regular~polygon,~~angle~X=\dfrac{180^o} n.\\ A_1A_2, .......A_1A_r ...A_1A_n~~\text{ are all the bases of }\\ \text{isosceles triangles with equal sides R-R and 2*(r-1)*X as vertex angle.}\\ For~~A_1A_r, ~the~vertext~angle~is~~~=2*(r-1)*X.\\ \therefore~A_1A_r =2*R*Sin\{(r-1)X\}.\\ \implies~\{A_1A_r\}^2 =4*R^2Sin^2 \{(r-1)X \}.\\ \therefore for~ a ~n\!\!-\!\!gon~ \displaystyle \sum_{r=2}^n 4*R^2Sin^2\{(r-1)*X\}.\\For~n=5,~~X=\dfrac{180^o} 5=36^o .\\ \displaystyle \sum_{r=2}^5 4*R^2Sin^2\{(r-1)*36^o\}=10*R^2\\ For~n=7,~~X=\dfrac{180^o} 7 ,~~n-1=6.\\ \displaystyle \sum_{r=2}^7 4*R^2Sin^2\{(r-1)*\dfrac{180^o} 7\}=14*R^2 \\ n=~~~~\Large \color{#3D99F6}{7} \\~~\\ I n t r e s t i n g o b s e r v a t i o n . Intresting ~~observation. r = 2 n { A 1 A r } 2 = 2 n R 2 f o r n g o n . \Large \color{#D61F06}{\displaystyle \sum_{r=2}^{n} \{A_1A_r\}^2=2*n*R^2}~~for~~n\!-\!gon.

Nice Observation :D

HariShankar PV - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...