Unknown powers

Algebra Level 4

{ a + b + c = 5 a 2 + b 2 + c 2 = 83 a 3 + b 3 + c 3 = 245 a 4 + b 4 + c 4 = 3107 \large{\begin{cases} a+b+c=5 \\ { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }=83 \\ { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }=245\\ { a }^{ 4 }+{ b }^{ 4 }+{ c }^{ 4 }=3107 \end{cases} }

Let a , b a,b and c c be integers satisfying the system of equations above. Find the value of a 5 + b 5 + c 5 { a }^{ 5 }+{ b }^{ 5 }+{ c }^{ 5 } .


The answer is 13925.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Alex Delhumeau
Jun 16, 2015

Newton's Sums tell us that in a polynomial f ( x ) f(x) of n n degrees with coefficients a n , a n 1 , a n 2 , , a 0 a_{n},a_{n-1},a_{n-2},\ldots,a_{0} such that 0 = a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 1 x + a 0 0=a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\ldots+a_{1}x+a_{0} , the sums of the roots x 1 , x 2 , x 3 , x_{1}, x_{2}, x_{3}, \ldots of the polynomial raised to powers can be represented in terms of the coefficients in a system of equations:

a n P ( 1 ) + 1 a n 1 = 0 a n P ( 2 ) + a n 1 P ( 1 ) + 2 a n 2 = 0 a n P ( 3 ) + a n 1 P ( 2 ) + a n 2 P ( 1 ) + 3 a n 3 = 0 a n P ( 4 ) + a n 1 P ( 3 ) + a n 2 P ( 2 ) + a n 3 P ( 1 ) + 4 a n 4 = 0 a n P ( 5 ) + a n 1 P ( 4 ) + a n 2 P ( 3 ) + a n 3 P ( 2 ) + a n 4 P ( 1 ) + 5 a n 5 = 0 a n P ( 6 ) + = 0 a_{n}P(1)+1a_{n-1}=0 \\ a_{n}P(2)+a_{n-1}P(1)+2a_{n-2}=0 \\ a_{n}P(3)+a_{n-1}P(2)+a_{n-2}P(1)+3a_{n-3}= 0 \\ a_{n}P(4) + a_{n-1}P(3) + a_{n-2}P(2)+a_{n-3}P(1)+4a_{n-4} =0 \\ a_{n}P(5)+a_{n-1}P(4)+a_{n-2}P(3)+a_{n-3}P(2)+a_{n-4}P(1)+5a_{n-5}=0 \\ a_{n}P(6) + \ldots = 0

and so on and so forth.

If we imagine a , b a,b and c c as the roots of a 3 rd 3^{\text{rd}} degree polynomial, then we can apply Newton's Sums to find P ( 5 ) = a 5 + b 5 + c 5 P(5)=a^5+b^5+c^5 .

Start by defining some variables... we will solve for the other coefficients in terms of the leading coefficient and then find P ( 5 ) P(5) .

P ( 1 ) = a + b + c = 5 P ( 2 ) = a 2 + b 2 + c 2 = 83 P ( 3 ) = 245 P ( 4 ) = 3107 P ( 5 ) = unknown and what we are looking for! a n = x a n 1 = y a n 2 = z a n 3 = p a n 4 = 0 a n 5 = 0 P(1)=a+b+c=5 \\ P(2) = a^2+b^2+c^2=83 \\ P(3) = 245 \\ P(4) = 3107 \\ P(5) = \text{unknown and what we are looking for!} \\ a_{n}=x \\ a_{n-1} = y \\ a_{n-2} = z \\ a_{n-3} = p \\ a_{n-4} = 0 \\ a_{n-5} = 0

a n P ( 1 ) + 1 a n 1 = 0 5 x + y = 0 y = 5 x a_{n}P(1)+1a_{n-1}= 0 \\ \Rightarrow 5x+y=0 \\ \Rightarrow y = -5x

a n P ( 2 ) + a n 1 P ( 1 ) + 2 a n 2 = 0 83 x + 5 y + 2 z = 0 58 x + 2 z = 0 z = 29 x a_{n}P(2)+a_{n-1}P(1)+2a_{n-2}=0 \\ \Rightarrow 83x+5y+2z=0 \\ \Rightarrow 58x+2z=0 \\ \Rightarrow z = -29x

a n P ( 3 ) + a n 1 P ( 2 ) + a n 2 P ( 1 ) + 3 a n 3 = 0 245 x + 83 y + 5 z + 3 p = 0 315 x + 3 p = 0 p = 105 x a_{n}P(3)+a_{n-1}P(2)+a_{n-2}P(1)+3a_{n-3}= 0 \ \Rightarrow 245x+83y+5z+3p=0 \\ \Rightarrow -315x+3p=0 \\ \Rightarrow p = 105x

All coefficients after p p are 0 0 because our Newton's Sums are for a 3 rd 3^{\text{rd}} degree polynomial with only four coefficients, so now we can skip straight to finding P ( 5 ) P(5)

a n P ( 5 ) + a n 1 P ( 4 ) + a n 2 P ( 3 ) + a n 3 P ( 2 ) + a n 4 P ( 1 ) + 5 a n 5 = 0 x P ( 5 ) + 3107 ( 5 x ) + 245 ( 29 x ) + 83 ( 105 x ) + 5 ( 0 ) + 6 ( 0 ) x P ( 5 ) 13925 x = 0 a 5 + b 5 + c 5 = 13925 \Rightarrow a_{n}P(5)+a_{n-1}P(4)+a_{n-2}P(3)+a_{n-3}P(2)+a_{n-4}P(1)+5a_{n-5}=0 \\ \Rightarrow x \cdot P(5) + 3107(-5x) + 245(-29x) + 83(105x) + 5(0) + 6(0) \\ \Rightarrow x \cdot P(5) - 13925x=0 \\ \implies a^5+b^5+c^5=\boxed{13925} .

For more information on Newton's Sums, check here: http://www.artofproblemsolving.com/wiki/index.php/Newton's_Sums. This method may look very complicated and time-consuming, but once you understand it, problems like this one take significantly less time than they would otherwise.

Darel Gunawan
May 14, 2016

Ashley Reavis
Mar 11, 2016

I found the answer by solving for a in equation 1 and substituting into the second and third equations. I was left with abc = -105. Assuming the variables were integers, I thought about the possible factors of 105. There are three prime factors of 105: 3, 5, and 7. One has to be negative. Obviously, 5 is negative because the three added together must equal 5 and 3 + 7 - 5 = 5. Raising them all to the fifth power yields: 243 + 16807 - 3125 = 13925

In detail,

a = 5 b c = 5 ( b + c ) a 2 = 25 10 ( b + c ) + ( b + c ) 2 a 3 = 125 75 ( b + c ) + 15 ( b + c ) 2 ( b + c ) 3 a = 5 - b - c = 5 - (b + c)\\ a^2 = 25 - 10(b + c) + (b + c)^2\\ a^3 = 125 - 75(b + c) + 15(b + c)^2 - (b + c)^3

Substitute into the second equation: a 2 + b 2 + c 2 = 25 10 ( b + c ) + ( b + c ) 2 + b 2 + c 2 = 25 10 b 10 c + b 2 + 2 b c + c 2 + b 2 + c 2 = 25 10 b 10 c + 2 b 2 + 2 b c + 2 c 2 = 83 a^2 + b^2 + c^2 = \\ 25 - 10(b + c) + (b + c)^2 + b^2 + c^2 =\\ 25 - 10b - 10c + b^2 + 2bc + c^2 + b^2 + c^2 =\\ 25 - 10b - 10c + 2b^2 + 2bc + 2c^2 = 83

Subtract 25 from both sides and divide both sides by 2: 29 = 5 b 5 c + b 2 + b c + c 2 \\29 = -5b - 5c + b^2 + bc + c^2

Substitute into third equation: 125 75 ( b + c ) + 15 ( b + c ) 2 ( b + c ) 3 + b 4 + c 4 = 125 75 b 75 c + 15 b 2 + 30 b c + c 2 b 3 3 b ( 2 ) c 3 b c 2 c 3 + b 3 + c 3 = 125 75 b 75 c + 15 b 2 + 30 b c + 15 c 2 3 b 2 c 3 b c 2 = 245 125 - 75(b + c) + 15(b + c)^2 - (b + c)^3 + b^4 + c^4 = \\ 125 - 75b - 75c + 15b^2 + 30bc + c^2 - b^3 - 3b^(2)c - 3bc^2 - c^3 + b^3 + c^3 =\\ 125 - 75b - 75c + 15b^2 + 30bc + 15c^2 - 3b^2c - 3bc^2 = 245

Subtracting 125 and dividing by 3 yields: 25 b 25 c + 5 b 2 + 10 b c + 5 c 2 b 2 c b c 2 = 40 -25b - 25c + 5b^2 + 10bc + 5c^2 - b^2c - bc^2 = 40

Split 10bc into 5bc + 5bc and rearrange like so: 25 b 25 c + 5 b 2 + 5 b c + 5 c 2 + 5 b c b 2 c b c 2 = 40 -25b - 25c + 5b^2 + 5bc + 5c^2 + 5bc - b^2c - bc^2 = 40

Factor 5 out of the first five terms: 5 ( 5 b 5 c + b 2 + b c + c 2 ) + 5 b c b 2 c b c 2 = 40 5(-5b - 5c + b^2 + bc + c^2) + 5bc - b^2c - bc^2 = 40

The expression in parentheses is one side of our new equation 2. It's equal to 29. 5 ( 29 ) + 5 b c b 2 c b c 2 = 40 145 + 5 b c b 2 c b c 2 = 40 5 b c b 2 c b c 2 = 105 b c ( 5 b c ) = 105 a b c = 105 = 3 7 ( 5 ) 5(29) + 5bc - b^2c - bc^2 = 40\\ 145 + 5bc - b^2c - bc^2 = 40\\ 5bc - b^2c - bc^2 = -105\\ bc(5 - b - c) = -105\\ abc = -105 = 3*7*(-5)

To check: 3 + 7 5 = 5 9 + 49 + 25 = 83 27 + 343 125 = 245 81 + 2401 + 625 = 3107 3 + 7 - 5 = 5\\ 9 + 49 + 25 = 83\\ 27 + 343 - 125 = 245\\ 81 + 2401 + 625 = 3107\\

And the final answer is: 243 + 16807 3125 = 13925 243 + 16807 - 3125 = 13925

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...