Unseen integral?

Calculus Level 5

0 π / 4 ln ( cot x ) ( sin 2 x ) 2008 d x ( ( sin x ) 2009 + ( cos x ) 2009 ) 2 = a b ln a c 2 \large \int_{0}^{\pi/4} \frac{\ln(\cot x)(\sin 2x)^{2008} dx}{( (\sin x)^{2009} + (\cos x)^{2009})^2} =\frac{a^b \ln a}{c^2}

Find a + b + c 4000 a+ b + c- 4000 , given they are in lowest form.

11 17 5 19 13

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 17, 2017

Consider the following integral:

I n = 0 π 4 ln ( cot x ) sin n 2 x ( sin n + 1 x + cos n + 1 x ) 2 d x = 0 π 4 ln ( tan x ) 2 n sin n x cos n x ( sin n + 1 x + cos n + 1 x ) 2 d x Divide up and down by cos 2 n + 2 x = 0 π 4 2 n ln ( tan x ) tan n x sec 2 x ( tan n + 1 x + 1 ) 2 d x Let t = tan x d t = sec 2 x d x = 0 1 2 n t n ln t ( t n + 1 + 1 ) 2 d t By integration by parts = 2 n ln t ( n + 1 ) ( t n + 1 + 1 ) 0 1 2 n n + 1 0 1 d t t ( t n + 1 + 1 ) = 2 n ln t ( n + 1 ) ( t n + 1 + 1 ) 0 1 2 n n + 1 0 1 d t t n + 2 ( 1 + 1 t n + 1 ) Let u = 1 + 1 t n + 1 d u = n + 1 t n + 2 d t = 2 n ln t ( n + 1 ) ( t n + 1 + 1 ) 0 1 + 2 n ( n + 1 ) 2 2 d u u = 2 n ln t ( n + 1 ) ( t n + 1 + 1 ) 0 1 + 2 n ln u ( n + 1 ) 2 2 = 2 n ln t ( n + 1 ) ( t n + 1 + 1 ) + 2 n ln ( 1 + 1 t n + 1 ) ( n + 1 ) 2 0 1 = 2 n n + 1 [ ln t t n + 1 + 1 + ln ( t n + 1 + 1 ) n + 1 ln t ] 0 1 = 2 n ln 2 ( n + 1 ) 2 \begin{aligned} I_n & = \int_0^\frac \pi 4 \frac {\ln(\cot x)\sin^n 2x}{\left(\sin^{n+1}x+\cos^{n+1}x \right)^2}\ dx \\ & = \int_0^\frac \pi 4 \frac {-\ln(\tan x)2^n\sin^n x\cos^n x}{\left(\sin^{n+1}x+\cos^{n+1}x \right)^2}\ dx & \small \color{#3D99F6} \text{Divide up and down by }\cos^ {2n+2}x \\ & = \int_0^\frac \pi 4 \frac {-2^n\ln(\tan x)\tan^n x \sec^2 x}{\left(\tan^{n+1}x+1 \right)^2}\ dx & \small \color{#3D99F6} \text{Let }t = \tan x \implies dt = \sec^2 x \ dx \\ & = \int_0^1 \frac {-2^n t^n \ln t}{\left(t^{n+1}+1 \right)^2}\ dt & \small \color{#3D99F6} \text{By integration by parts} \\ & = \frac {2^n \ln t}{(n+1)\left(t^{n+1}+1 \right)} \bigg|_0^1 - \frac {2^n}{n+1} \int_0^1 \frac {dt}{t\left(t^{n+1}+1 \right)} \\ & = \frac {2^n \ln t}{(n+1)\left(t^{n+1}+1 \right)} \bigg|_0^1 - \frac {2^n}{n+1} \color{#3D99F6} \int_0^1 \frac {dt}{t^{n+2}\left(1+\frac 1{t^{n+1}} \right)} & \small \color{#3D99F6} \text{Let }u = 1+\frac 1{t^{n+1}} \implies du = - \frac {n+1}{t^{n+2}}dt \\ & = \frac {2^n \ln t}{(n+1)\left(t^{n+1}+1 \right)} \bigg|_0^1 \color{#3D99F6} + \frac {2^n}{(n+1)^2} \int_\infty^2 \frac {du}u \\ & = \frac {2^n \ln t}{(n+1)\left(t^{n+1}+1 \right)} \bigg|_0^1 + \frac {2^n\ln u}{(n+1)^2} \bigg|_\infty^2 \\ & = \frac {2^n \ln t}{(n+1)\left(t^{n+1}+1 \right)} + \frac {2^n\ln \left(1+\frac 1{t^{n+1}}\right)}{(n+1)^2} \bigg|_0^1 \\ & = \frac {2^n}{n+1} \left[ \frac {\ln t}{t^{n+1}+1} + \frac {\ln \left(t^{n+1}+1\right)}{n+1} - \ln t \right]_0^1 \\ & = \frac {2^n \ln 2}{(n+1)^2} \end{aligned}

I 2008 = 2 2008 ln 2 200 9 2 a + b + c 4000 = 2 + 2008 + 2009 4000 = 19 \implies I_{2008} = \dfrac {2^{2008}\ln 2}{2009^2} \implies a +b+c - 4000 = 2+2008+2009-4000 = \boxed{19}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...