Unsquaring a sequence

Algebra Level 4

Let { x n } \{x_n\} be a sequence of positive numbers. If x 1 = 3 2 x_1=\frac{3}{2} and x n + 1 2 x n 2 = 1 ( n + 2 ) 2 1 n 2 x_{n+1}^2-x_{n}^2=\dfrac{1}{(n+2)^2}-\dfrac{1}{n^2} for all positive integer n n .

Find x 1 + x 2 + . . . + x 2009 x_1+x_2+...+x_{2009} .

Challenge: Feel easy? Try out the whole set of problems here .


The answer is 2009.999502.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x n + 1 2 x n 2 = 1 ( n + 2 ) 2 1 n 2 Given k = 1 n ( x k + 1 2 x k 2 ) = k = 1 n ( 1 ( k + 2 ) 2 1 k 2 ) x n + 1 2 x 1 2 = 1 ( n + 1 ) 2 + 1 ( n + 2 ) 2 1 1 1 4 Given that x 1 = 3 2 x n + 1 2 = 1 + 1 ( n + 1 ) 2 + 1 ( n + 2 ) 2 Replace n + 1 with n x n 2 = 1 + 1 n 2 + 1 ( n + 1 ) 2 x n = x 4 + 2 x 3 + 3 x 2 + 2 x + 1 n 2 ( n + 1 ) 2 = ( n 2 + n + 1 ) 2 n 2 ( n + 1 ) 2 = n 2 + n + 1 n ( n + 1 ) = 1 + 1 n 1 n + 1 \begin{aligned} x_{n+1}^2 - x_n^2 & = \frac 1{(n+2)^2} - \frac 1{n^2} & \small \color{#3D99F6} \text{Given} \\ \sum_{k=1}^n \left(x_{k+1}^2 - x_k^2\right) & = \sum_{k=1}^n \left(\frac 1{(k+2)^2} - \frac 1{k^2}\right) \\ x_{n+1}^2 - \color{#3D99F6} x_1^2 & = \frac 1{(n+1)^2} + \frac 1{(n+2)^2} - \frac 11 - \frac 14 & \small \color{#3D99F6} \text{Given that }x_1 = \frac 32 \\ \implies x_{n+1}^2 & = 1 + \frac 1{(n+1)^2} + \frac 1{(n+2)^2} & \small \color{#3D99F6} \text{Replace }n+1 \text{ with }n \\ x_n^2 & = 1 + \frac 1{n^2} + \frac 1{(n+1)^2} \\ \implies x_n & = \sqrt{\frac {x^4+2x^3+3x^2+2x+1}{n^2(n+1)^2}} \\ & = \sqrt{\frac {(n^2+n+1)^2}{n^2(n+1)^2}} \\ & = \frac {n^2+n+1}{n(n+1)} \\ & = 1 + \frac 1n - \frac 1{n+1} \end{aligned}

Therefore,

n = 1 2009 x n = n = 1 2009 ( 1 + 1 n 1 n + 1 ) = 2009 + 1 1 2010 2009.999502 \begin{aligned} \sum_{n=1}^{2009} x_n & = \sum_{n=1}^{2009} \left(1 + \frac 1n - \frac 1{n+1}\right) = 2009 + 1 - \frac 1{2010} \approx \boxed{2009.999502} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...