Unsympathetic Trigonometric Arithmetic

Geometry Level 4

2 cot 1 ( j = 1 44 cos ( j ) k = 1 44 sin ( k ) ) = x , x = ? \large 2\cot^{-1} \left( \frac{\displaystyle \sum_{j=1}^{44} \cos(j^\circ) }{\displaystyle \sum_{k=1}^{44} \sin(k^\circ) } \right) = x^\circ \qquad , \qquad x = \ ?

All angles are measured in degrees.


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

j = 1 44 cos ( j ) = j = 46 89 sin ( j ) = j = 1 44 sin ( 45 + j ) = j = 1 44 [ sin ( 4 5 ) cos ( j ) + cos ( 4 5 ) sin ( j ) ] = 1 2 j = 1 44 [ cos ( j ) + sin ( j ) ] ( 1 1 2 ) j = 1 44 cos ( j ) = 1 2 j = 1 44 sin ( j ) j = 1 44 cos ( j ) = ( 1 2 1 ) j = 1 44 sin ( j ) j = 1 44 cos ( j ) k = 1 44 sin ( k ) = 1 + 2 2 cot 1 ( j = 1 44 cos ( j ) k = 1 44 sin ( k ) ) = 2 cot 1 ( 1 + 2 ) = 2 tan 1 ( 1 1 + 2 ) = 2 tan 1 ( 2 1 ) [ See Note ] = 2 ( 22. 5 ) = 45 \begin{aligned} \sum_{j=1}^{44} \cos{(j^\circ)} & = \sum_{j=46} ^{89} \sin{(j^\circ)} = \sum_{j=1}^{44} \sin{(45+j)^\circ} \\ & = \sum_{j=1}^{44} [\sin{(45^\circ)}\cos{(j^\circ)} + \cos{(45^\circ)}\sin{(j^\circ)}] \\ & = \frac{1}{\sqrt{2}} \sum_{j=1}^{44} [\cos{(j^\circ)} + \sin{(j^\circ)}] \\ \Rightarrow \left(1 -\frac{1}{\sqrt{2}} \right) \sum_{j=1}^{44} \cos{(j^\circ)} & = \frac{1}{\sqrt{2}} \sum_{j=1}^{44} \sin{(j^\circ)} \\ \sum_{j=1}^{44} \cos{(j^\circ)} & = \left( \frac{1}{\sqrt{2}-1} \right) \sum_{j=1}^{44} \sin{(j^\circ)} \\ \frac{\displaystyle \sum_{j=1}^{44} \cos{(j^\circ)} }{\displaystyle \sum_{k=1}^{44} \sin{(k^\circ)}} & = 1+\sqrt{2} \\ \Rightarrow 2\cot^{-1} \left( \frac{\displaystyle \sum_{j=1}^{44} \cos{(j^\circ)} }{\displaystyle \sum_{k=1}^{44} \sin{(k^\circ)}} \right) & = 2\cot^{-1} \left( 1+\sqrt{2} \right) \\ & = 2 \tan^{-1} \left( \frac{1}{1+\sqrt{2}} \right) \\ & = 2 \tan^{-1} \left(\color{#3D99F6}{\sqrt{2}-1} \right) \quad \quad \color{#3D99F6}{[\text{See Note}]} \\ & = 2 \left( \color{#3D99F6}{22.5^\circ} \right) = \boxed{45}^\circ \end{aligned}

Note: \color{#3D99F6}{\text{Note:}}

Let t = tan 22. 5 t = \tan{22.5^\circ}

tan 4 5 = 1 = 2 t 1 t 2 t 2 + 2 t 1 = 0 t = tan 22. 5 = 2 + 8 2 = 2 1 \begin{aligned} \Rightarrow \tan{45^\circ} = 1 & = \frac{2t}{1-t^2} \\ \Rightarrow t^2 + 2t -1 & = 0 \Rightarrow t = \tan{\color{#3D99F6}{22.5^ \circ}} & = \frac{-2+\sqrt{8}}{2} = \color{#3D99F6}{\sqrt{2} - 1} \end{aligned}

So awesome!!

Adarsh Kumar - 5 years, 10 months ago

Let w = e 1 i + e 2 i + + e n i w=e^{1^\circ i}+e^{2^\circ i}+\cdots+e^{n^\circ i} , then w = e ( n + 1 ) i e 1 i e 1 i 1 w=\dfrac{e^{(n+1)^\circ i}-e^{1^\circ i}}{e^{1^\circ i}-1} using the formula for the sum of a geometric progression.

Now, we can manipulate it to obtain w = e ( 1 + n / 2 ) i e 1 i / 2 e n i / 2 e n i / 2 e 1 i / 2 e 1 i / 2 w=\dfrac{e^{(1+n/2)^\circ i}}{e^{1^\circ i/2}} \cdot \dfrac{e^{n i^\circ /2}-e^{-n i^\circ/2}}{e^{1^\circ i/2}-e^{-1^\circ i/2}}

Use e θ i 1 / e θ i = 2 i sin θ e^{\theta i}-1/e^{\theta i}=2i \sin \theta :

w = e ( n + 1 ) i / 2 2 i sin n 2 2 i sin 1 2 w=e^{(n+1)^\circ i/2} \cdot \dfrac{2i \sin \frac{n^\circ}{2}}{2i \sin \frac{1^\circ}{2}}

w = [ cos ( ( n + 1 ) 2 ) + i sin ( ( n + 1 ) 2 ) ] sin n 2 sin 1 2 w=\left[\cos\left(\dfrac{(n+1)^\circ}{2}\right)+i\sin\left(\dfrac{(n+1)^\circ}{2}\right)\right] \cdot \dfrac{\sin \frac{n^\circ}{2}}{\sin \frac{1^\circ}{2}}

That is the derivation of an special case for the summation of sines and cosines of angles in arithmetic progression.

Clearly, j = 1 n cos ( j ) = Re ( w ) \displaystyle \sum_{j=1}^{n} \cos(j^\circ)=\text{Re}(w) and k = 1 n sin ( k ) = Im ( w ) \displaystyle \sum_{k=1}^{n} \sin(k^\circ)=\text{Im}(w) , so:

j = 1 n cos ( j ) k = 1 n sin ( k ) = cot ( ( n + 1 ) 2 ) \dfrac{\displaystyle \sum_{j=1}^{n} \cos(j^\circ)}{\displaystyle \sum_{k=1}^{n} \sin(k^\circ)}=\cot \left(\dfrac{(n+1)^\circ}{2}\right)

The expression above is valid only when sin ( n 2 ) 0 \sin\left(\dfrac{n^\circ}{2}\right) \neq 0 , in this problem n = 44 n=44 , so we can apply the formula:

x = 2 arccot ( cot ( ( 44 + 1 ) 2 ) ) = 2 ( 4 5 2 ) x^\circ=2 \text{arccot}\left(\cot\left(\dfrac{(44+1)^\circ}{2}\right)\right)=2\left(\dfrac{45^\circ}{2}\right)

Hence, x = 45 x=\boxed{45} .

YOU'RE THE BEST!!

Pi Han Goh - 5 years, 9 months ago

Log in to reply

No, you are the best :D

Alan Enrique Ontiveros Salazar - 5 years, 9 months ago

Log in to reply

Pi Han Goh - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...