2 cot − 1 ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ k = 1 ∑ 4 4 sin ( k ∘ ) j = 1 ∑ 4 4 cos ( j ∘ ) ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ = x ∘ , x = ?
All angles are measured in degrees.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
So awesome!!
Let w = e 1 ∘ i + e 2 ∘ i + ⋯ + e n ∘ i , then w = e 1 ∘ i − 1 e ( n + 1 ) ∘ i − e 1 ∘ i using the formula for the sum of a geometric progression.
Now, we can manipulate it to obtain w = e 1 ∘ i / 2 e ( 1 + n / 2 ) ∘ i ⋅ e 1 ∘ i / 2 − e − 1 ∘ i / 2 e n i ∘ / 2 − e − n i ∘ / 2
Use e θ i − 1 / e θ i = 2 i sin θ :
w = e ( n + 1 ) ∘ i / 2 ⋅ 2 i sin 2 1 ∘ 2 i sin 2 n ∘
w = [ cos ( 2 ( n + 1 ) ∘ ) + i sin ( 2 ( n + 1 ) ∘ ) ] ⋅ sin 2 1 ∘ sin 2 n ∘
That is the derivation of an special case for the summation of sines and cosines of angles in arithmetic progression.
Clearly, j = 1 ∑ n cos ( j ∘ ) = Re ( w ) and k = 1 ∑ n sin ( k ∘ ) = Im ( w ) , so:
k = 1 ∑ n sin ( k ∘ ) j = 1 ∑ n cos ( j ∘ ) = cot ( 2 ( n + 1 ) ∘ )
The expression above is valid only when sin ( 2 n ∘ ) = 0 , in this problem n = 4 4 , so we can apply the formula:
x ∘ = 2 arccot ( cot ( 2 ( 4 4 + 1 ) ∘ ) ) = 2 ( 2 4 5 ∘ )
Hence, x = 4 5 .
YOU'RE THE BEST!!
Log in to reply
No, you are the best :D
Problem Loading...
Note Loading...
Set Loading...
j = 1 ∑ 4 4 cos ( j ∘ ) ⇒ ( 1 − 2 1 ) j = 1 ∑ 4 4 cos ( j ∘ ) j = 1 ∑ 4 4 cos ( j ∘ ) k = 1 ∑ 4 4 sin ( k ∘ ) j = 1 ∑ 4 4 cos ( j ∘ ) ⇒ 2 cot − 1 ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ k = 1 ∑ 4 4 sin ( k ∘ ) j = 1 ∑ 4 4 cos ( j ∘ ) ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ = j = 4 6 ∑ 8 9 sin ( j ∘ ) = j = 1 ∑ 4 4 sin ( 4 5 + j ) ∘ = j = 1 ∑ 4 4 [ sin ( 4 5 ∘ ) cos ( j ∘ ) + cos ( 4 5 ∘ ) sin ( j ∘ ) ] = 2 1 j = 1 ∑ 4 4 [ cos ( j ∘ ) + sin ( j ∘ ) ] = 2 1 j = 1 ∑ 4 4 sin ( j ∘ ) = ( 2 − 1 1 ) j = 1 ∑ 4 4 sin ( j ∘ ) = 1 + 2 = 2 cot − 1 ( 1 + 2 ) = 2 tan − 1 ( 1 + 2 1 ) = 2 tan − 1 ( 2 − 1 ) [ See Note ] = 2 ( 2 2 . 5 ∘ ) = 4 5 ∘
Note:
Let t = tan 2 2 . 5 ∘
⇒ tan 4 5 ∘ = 1 ⇒ t 2 + 2 t − 1 = 1 − t 2 2 t = 0 ⇒ t = tan 2 2 . 5 ∘ = 2 − 2 + 8 = 2 − 1