UnTangle without calculator

Geometry Level 2

Given: tan 3 0 = 1 3 3 \tan 30^\circ = \tfrac13\sqrt 3 and tan 6 0 = 3 \tan 60^\circ = \sqrt 3 .

A certain angle 0 < θ < 9 0 0 < \theta < 90^\circ satisfies tan θ = 11 / 3 \tan \theta = 11/3 .

Is θ \theta less than 7 5 75^\circ or greater than 7 5 75^\circ ? Solve this problem without using a calculator.

θ < 7 5 \theta < 75^\circ θ > 7 5 \theta > 75^\circ

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Dec 17, 2017

Notice that tan θ \tan \theta is an increasing function when 0 < θ < 9 0 0^\circ < \theta < 90^\circ .

Note that tan ( 7 5 ) = tan ( 3 0 + 4 5 ) \tan(75^\circ) = \tan(30^\circ + 45^\circ) . We apply the compound angle formula , tan ( A + B ) = tan A + tan B 1 tan A tan B \tan(A+B) = \dfrac{\tan A + \tan B}{1 - \tan A \tan B} to get tan ( 7 5 ) = 2 + 3 \tan(75^\circ) = 2 + \sqrt3 .

So we just need to determine whether 11 3 \dfrac{11}3 less than or greater than 2 + 3 2 + \sqrt3 .

In other words,
If tan θ = 11 3 \tan \theta = \dfrac{11}{3} is less than 2 + 3 2 + \sqrt3 , then 0 < θ < 7 5 0^\circ < \theta < 75^\circ .
If tan θ = 11 3 \tan \theta = \dfrac{11}{3} is greater than 2 + 3 2 + \sqrt3 , then 7 5 < θ < 9 0 75^\circ < \theta < 90^\circ .

11 / 3 ? 2 + 3 5 / 3 ? 3 5 ? 3 3 25 ? 27 \begin{aligned} 11/3 & \quad ? \quad & 2 + \sqrt3 \\ 5/3 & \quad ? \quad & \sqrt3\\ 5 & \quad ? \quad & 3 \sqrt3 \\ 25& \quad ? \quad & 27 \end{aligned}

So "?" should be " < < ". Thus, θ < 7 5 \boxed{\theta < 75^\circ} .

Excellent! This solution is simpler than the one I had in mind. One only has to remember that tan 4 5 = 1 \tan 45^\circ = 1 .

Arjen Vreugdenhil - 3 years, 5 months ago
Arjen Vreugdenhil
Dec 10, 2017

We will calculate tan 2 θ \tan 2\theta and compare it to tan 15 0 = tan 3 0 = 1 3 3 \tan 150^\circ = -\tan 30^\circ = -\tfrac13\sqrt 3 .

tan 2 θ = 2 tan θ 1 tan 2 θ = 2 11 / 3 1 ( 11 / 3 ) 2 = 66 9 121 = 66 112 = 33 56 . \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta} = \frac{2\cdot 11/3}{1 - (11/3)^2} = \frac{66}{9 - 121} = -\frac{66}{112} = -\frac{33}{56}.

Now 33 / 56 < 1 3 3 -33/56 < -\tfrac13\sqrt 3 if and only if ( 33 / 56 ) 2 > 1 / 3 (33/56)^2 > 1/3 . We check: ( 33 56 ) 2 = 1089 3136 > 1089 3267 = 1 3 . \left(\frac{33}{56}\right)^2 = \frac{1089}{3136} > \frac{1089}{3267} = \frac13.

We conclude that indeed tan 2 θ = 33 / 56 < 1 3 3 = tan 15 0 \tan 2\theta = -33/56 < -\tfrac13\sqrt 3 = \tan 150^\circ . It follows that tan θ < 7 5 \boxed{\tan\theta < 75^\circ} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...