Unusual Laplace Transform

Calculus Level 5

Let g ( s ) g(s) be the Laplace Transform of the function f ( x ) = 1 x f(x) = \dfrac{1}{\lceil x \rceil} .

What is the closed form of g g using the variable s s ?

A : ( 1 e s ) ln ( 1 e s ) s B : ln ( e s 1 ) s 2 C : s ln ( e s 1 ) e s 1 D : ln ( 1 e s ) s ( e s 1 ) \begin{array}{ccc} A: & \dfrac{(1-e^s)\ln(1-e^{-s})}{s} \\ B : & \dfrac{\ln(e^s-1)}{s^2} \\ C : & \dfrac{s \ln(e^s-1)}{e^s-1} \\ D : & \dfrac{\ln(1-e^{-s})}{s(e^{-s}-1)} \end{array}

Notation: \lceil \cdot \rceil denotes the ceiling function .

(C) None of the given answers (A) (D) (B)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Mar 20, 2017

g ( s ) = 0 1 x e s x d x \large \displaystyle g(s) = \int_0^{\infty} \frac{1}{\lceil x \rceil} e^{-sx} dx

g ( s ) = 0 1 1 1 e s x d x + 1 2 1 2 e s x d x + 2 3 1 3 e s x d x + . . . \large \displaystyle g(s) = \int_0^1 \frac11 e^{-sx} dx + \int_1^2 \frac12 e^{-sx} dx + \int_2^3 \frac13 e^{-sx} dx + ...

g ( s ) = 1 1 e s x s 0 1 + 1 2 e s x s 1 2 + 1 3 e s x s 2 3 + . . . \large \displaystyle g(s) = \frac11 \frac{e^{-sx}}{-s} \Big | _0^1 + \frac12 \frac{e^{-sx}}{-s} \Big | _1^2 + \frac13 \frac{e^{-sx}}{-s} \Big | _2^3 + ...

g ( s ) = ( 1 e s s ) + 1 2 ( e s e 2 s s ) + 1 3 ( e 2 s e 3 s s ) + . . . \large \displaystyle g(s) = \Big ( \frac{1 - e^{-s}}{s} \Big ) + \frac12 \Big ( \frac{e^{-s} - e^{-2s}}{s} \Big ) + \frac13 \Big ( \frac{e^{-2s} - e^{-3s}}{s} \Big ) + ...

g ( s ) = ( 1 e s s ) ( 1 + e s 2 + e 2 s 3 + . . . ) \large \displaystyle g(s) = \Big ( \frac{1 - e^{-s}}{s} \Big ) \cdot \Big (1 + \frac{e^{-s}}{2} + \frac{e^{-2s}}{3} + ... \Big ) \

g ( s ) = ( 1 e s s ) e s ( 1 + e s 2 + e 2 s 3 + . . . ) e s \large \displaystyle g(s) = \Big ( \frac{1 - e^{-s}}{s} \Big ) \color{#3D99F6} \cdot e^s \color{#333333} \cdot \Big (1 + \frac{e^{-s}}{2} + \frac{e^{-2s}}{3} + ... \Big ) \color{#3D99F6} \cdot e^{-s}

g ( s ) = ( e s 1 s ) ( e s + e 2 s 2 + e 3 s 3 + . . . ) \large \displaystyle g(s) = \Big ( \frac{e^s - 1}{s} \Big ) \cdot \Big ( e^{-s} + \frac{e^{-2s}}{2} + \frac{e^{-3s}}{3} + ... \Big )

g ( s ) = ( e s 1 s ) ( ln ( 1 e s ) ) \large \displaystyle g(s) = \Big ( \frac{e^s - 1}{s} \Big ) \cdot (-\ln(1 - e^{-s}))

g ( s ) = ( 1 e s ) ln ( 1 e s ) s \large \displaystyle \color{#3D99F6} g(s) = \boxed{\large \displaystyle \frac{(1-e^s)\cdot \ln(1 - e^{-s})} {s} }

Really good Laplace Transform prob, Ariel!

tom engelsman - 4 years, 2 months ago

Perfect solution!

Thank you Tom Engelsman :)

Ariel Gershon - 4 years, 2 months ago

Log in to reply

Thanks, Ariel!

Guilherme Niedu - 4 years, 2 months ago

Nice method. Did the same way.

Indraneel Mukhopadhyaya - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...