Unusual problem

Algebra Level 3

Given that a + b = x y a + b = \overline{xy} and a b = x z ab = \overline{xz} satisfy the following equation:

a 2 + b 2 = 296 \large a^2 + b^2 = 296

where x , y x, y and z z are single digit positive integers. What is the minimum value of x y + x z \overline{xy} + \overline{xz} ?


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Yuan
Nov 21, 2017

We use the identity a 2 + b 2 = ( a + b ) 2 2 a b . a^2 + b^2 = (a + b)^2 - 2ab. If we substitute the given values for a + b a + b and a b ab into this equation, we get

x y 2 2 ( x z ) = 296. \overline{xy}^2 - 2(\overline{xz}) = 296.

Since we are going for the minimum possible value of x y + x z , \overline{xy} + \overline{xz}, we start with x = 1. x = 1. Since x y 2 > 296 , \overline{xy}^2 > 296, we try y = 8 , y = 8, so that x y = 18. \overline{xy} = 18. This yields

1 8 2 2 ( 1 z ) = 296 324 2 ( 1 z ) = 296 2 ( 1 z ) = 28 1 z = 14. \begin{aligned} 18^2 - 2(\overline{1z}) &= 296 \\ 324 - 2(\overline{1z}) &= 296 \\ 2(\overline{1z}) &= 28 \\ \overline{1z} &= 14. \end{aligned}

Thus, z = 4 , z = 4, and the minimum possible value of x y + x z \overline{xy} + \overline{xz} is 18 + 14 = 32 . 18 + 14 = \boxed{32}.

Chew-Seong Cheong
Nov 22, 2017

a 2 + b 2 = 296 ( a + b ) 2 2 a b = 296 ( 10 x + y ) 2 2 ( 10 x + z ) = 296 100 x 2 + 20 x y + y 2 20 x 2 z = 296 Note that x must be 1. 100 + 20 y + y 2 20 2 z = 296 20 y + y 2 2 z = 216 y 2 + 20 y 216 = 2 z Since z > 0 y 2 + 20 y 216 > 0 Solving the quadratic y > 316 10 7.776 y 8 y 2 + 20 y 216 = 2 z Putting y = 8 z = 4 \begin{aligned} a^2 + b^2 & = 296 \\ (a+b)^2 - 2ab & = 296 \\ (10x+y)^2 - 2(10x+z) & = 296 \\ 100{\color{#3D99F6}x^2} + 20xy + y^2 - 20x - 2z & = 296 & \small \color{#3D99F6} \text{Note that }x \text{ must be }1. \\ 100 + 20y + y^2 - 20 - 2z & = 296 \\ 20y + y^2 - 2z & = 216 \\ y^2 + 20y - 216 & = 2z & \small \color{#3D99F6} \text{Since }z > 0 \\ y^2 + 20y - 216 & > 0 & \small \color{#3D99F6} \text{Solving the quadratic} \\ y & > \sqrt{316} - 10 \approx 7.776 \\ \implies y & \ge 8 \\ y^2 + 20y - 216 & = 2z & \small \color{#3D99F6} \text{Putting }y=8 \\ \implies z & = 4 \end{aligned}

Therefore, the minimum value of x y + x z = 18 + 14 = 32 \overline{xy} + \overline{xz} = 18+14 = \boxed{32} .

How do you say z 0 z \ge 0 ? Isn't it strictly z > 0 z>0 because z z is a positive integer? Or does this work only when finding minimum?

Gazar Khalid - 11 months ago

Log in to reply

You are right. See my explanation above.

Chew-Seong Cheong - 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...