Up and down and up again!

Calculus Level 4

n = 1 ( 4 + ( 1 ) n ) 1 / n 2 = A π 2 / 24 \large \prod_{n=1}^\infty (4 + (-1)^n)^{1/n^2} =A^{\pi^2 /24}

If the equation above holds true for A A are integers, find A + 24 A+24 .


The answer is 159.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

n = 1 ( 4 + ( 1 ) n ) 1 n 2 = n = 1 5 1 ( 2 n ) 2 n = 1 3 1 ( 2 n 1 ) 2 = 5 n = 1 1 ( 2 n ) 2 3 n = 1 1 ( 2 n 1 ) 2 = 5 n = 1 1 ( 2 n ) 2 3 π 2 6 n = 1 1 ( 2 n ) 2 = 5 1 4 n = 1 1 n 2 3 π 2 6 1 4 n = 1 1 n 2 = 5 π 2 24 3 π 2 8 = 135 π 2 24 \begin{aligned} \prod_{n=1}^{\infty}{\large\left(4+(-1)^n\right)}^{^{\displaystyle\frac{1}{n^2}}}&=\prod_{n=1}^{\infty}{\huge 5}^{^{\displaystyle\frac{1}{(2n)^2}}}\cdot\prod_{n=1}^{\infty}{\huge 3}^{^{\displaystyle\frac{1}{(2n-1)^2}}}\\ &={\huge 5}^{^{\displaystyle\sum_{n=1}^{\infty}\frac{1}{(2n)^2}}}\cdot{\huge 3}^{^{\displaystyle\sum_{n=1}^{\infty}\frac{1}{(2n-1)^2}}}\\ &={\huge 5}^{^{\displaystyle\sum_{n=1}^{\infty}\frac{1}{(2n)^2}}}\cdot{\huge 3}^{^{\displaystyle\frac{\pi^2}{6}-\sum_{n=1}^{\infty}\frac{1}{(2n)^2}}}\\ &={\huge 5}^{^{\displaystyle\dfrac{1}{4}\sum_{n=1}^{\infty}\frac{1}{n^2}}}\cdot{\huge 3}^{^{\displaystyle\frac{\pi^2}{6}-\dfrac{1}{4}\sum_{n=1}^{\infty}\frac{1}{n^2}}}\\ &={\huge 5}^{^{\dfrac{\pi^2}{24}}}\cdot{\huge 3}^{^{\dfrac{\pi^2}{8}}}\\ &={\huge 135}^{^{\dfrac{\pi^2}{24}}} \end{aligned} So, A + 24 = 135 + 24 = 159 \large A+24=135+24=\boxed{159}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...