\uparrow More Up-Arrows \uparrow

Given two natural numbers a a and b b , the following definitions hold:

  • a b = a ( a ( a ) ) b times a \uparrow\uparrow\uparrow b = \underbrace{a\uparrow\uparrow (a \uparrow\uparrow (\cdots \uparrow\uparrow a))}_{b\text{ times}} .
  • a b = a ( a ( a ) ) b times a \uparrow\uparrow b = \underbrace{a\uparrow(a \uparrow (\cdots \uparrow a))}_{b\text{ times}} .
  • a b = a b a\uparrow b = a^b .

Compute n = 1 9 ( n ( n + 1 ) m o d 10 ) \displaystyle \sum_{n=1}^{9} \left(n\uparrow\uparrow\uparrow (n+1) \mod 10\right) .

The following are some examples of these tetration function:

  • 2 2 = 2 2 = 4 2\uparrow\uparrow 2 = 2^{2} = 4 .
  • 3 3 = 3 3 3 = 3 27 = 7625597484987 3\uparrow\uparrow 3 = 3^{3^3} = 3^{27} = 7625597484987 .
  • 4 4 = 4 4 4 4 = 4 1.3408 × 1 0 154 1 0 1 0 153.9 4\uparrow\uparrow 4 =4^{4^{4^4}} = 4^{1.3408 \times 10^{154}} \approx 10^{10^{153.9}} .
  • 5 5 = 5 5 5 5 5 1 0 1 0 1 0 2184.1 5\uparrow\uparrow 5 = 5^{5^{5^{5^5}}} \approx 10^{10^{10^{2184.1}}}


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let p ( m , n ) = m n m o d 10 p(m,n)=m^n \mod 10

It is clear that for all n > 0 n>0 , p ( 1 , n ) = 1 , p ( 5 , n ) = 5 , p ( 6 , n ) = 6 p(1,n)=1,p(5,n)=5,p(6,n)=6

Further, for m = 2 , 4 , 8 m=2,4,8 , we have m 2 m o d 4 = 0 m^2 \mod 4 = 0 and thus m ( n + 1 ) = m p m\uparrow\uparrow\uparrow (n+1) = m^p where p p would be a multiple of 4 (because m is a even number).

Thus, for even m, m ( m + 1 ) m\uparrow\uparrow\uparrow (m+1) would be of the form m 4 n m^{4n}

p ( 2 , 4 n ) = 6 , p ( 4 , 4 n ) = 6 , p ( 8 , 4 n ) = 6 p(2,4n)=6,p(4,4n)=6,p(8,4n)=6

For m = 3 , 7 m=3,7 , let

m ( m + 1 ) = m m q m\uparrow\uparrow\uparrow (m+1) = m^{m^q}

Now, m q m o d 4 = ( m m o d 4 ) q = ( 1 ) q = ( 1 ) m^q \mod 4 = (m \mod 4)^q = (-1)^q = (-1) (because q q would be an odd number for m = 3 , 7 m=3,7 and 3 m o d 4 = 7 m o d 4 = 1 m o d 4 = 3 3 \mod 4 = 7 \mod 4 = -1 \mod 4 = 3 .

Hence, 3 4 m o d 10 = 3 3 m o d 10 = 7 3\uparrow\uparrow\uparrow 4 \mod 10 = 3^3 \mod 10 = 7 and 7 8 m o d 10 = 7 3 m o d 10 = 3 7\uparrow\uparrow\uparrow 8 \mod 10 = 7^3 \mod 10 =3

Finally, it can be seen that any odd power of 9 9 would end in 9 9 , hence 9 10 m o d 10 = 9 9\uparrow\uparrow\uparrow 10 \mod 10 = 9

Hence, the required result is

1 + 6 + 7 + 6 + 5 + 6 + 3 + 6 + 9 = 49 1+6+7+6+5+6+3+6+9=\boxed{49}

Nice problem. You can also prove that n ^^^ (n+1) \equiv n^(n^3) \mod 10 .

Peter Byers - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...