Uproot this recurrence

Algebra Level 5

Let a n {a_n} be the sequence of real numbers defined by a 1 = t a_1 = t and a n + 1 = 4 a n ( 1 a n ) a_{n+1} = 4a_n(1 - a_n) for n 1 n \geq 1 .

If the number of distinct values of t t such that a 1998 = 0 a_{1998} = 0 is x x , find the value of x ( m o d 1000 ) x \pmod {1000} .


The answer is 337.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sharky Kesa
May 16, 2014

Let f ( x ) = 4 x ( 1 x ) f(x) = 4x(1 - x) . Observe that

f 1 ( 0 ) = 0 , 1 , f 1 ( 1 ) = 1 / 2 , f 1 [ 0 , 1 ] ) = [ 0 , 1 ] , f^{-1} (0) = {0, 1}, f^{-1} (1) = {1/2}, f^{-1} [0, 1]) = [0, 1],

and { y : f ( y ) = x } = 2 |\{y : f(y) = x\}| = 2 for all x [ 0 , 1 ) x \in [0, 1) .

Let A n = { x R : f n ( x ) = 0 } A_n = \{x \in \mathbb{R} : f^n (x) = 0\} ; then

A n + 1 = { x R : f n + 1 ( x ) = 0 } = { x R : f n ( f ( x ) ) = 0 } = { x R : f ( x ) A n } . \begin{aligned} A_{n + 1} &= \{x \in \mathbb{R} : f^{n + 1}(x) = 0\}\\ &= \{x \in \mathbb{R} : f^n(f(x)) = 0\} = \{ x \in \mathbb{R} : f(x) \in A_n\}. \end{aligned}

We claim that for all n 1 n \geq 1 , a n [ 0 , 1 ] a_n \subset [0, 1] , 1 A n 1 \in A_n , and

A n = 2 n 1 + 1. |A_n| = 2^{n - 1} + 1.

For n = 1 n = 1 , we have

A 1 = { x R f ( x ) = 0 } = 0 , 1 , A_1 = \{x \in \mathbb{R} | f(x) = 0\} = {0, 1},

and the claim holds.

Now suppose n 1 n \geq 1 and A n [ 0 , 1 ] , 1 A n A_n \subset [0, 1], 1 \in A_n , and A n = 2 n 1 + 1 |A_n| = 2^{n - 1} + 1 . Then

x A n + 1 f ( x ) A n [ 0 , 1 ] x [ 0 , 1 ] , x \in A_{n + 1} \Rightarrow f(x) \in A_n \subset [0, 1] \Rightarrow x \in [0, 1],

so A n + 1 [ 0 , 1 ] A_{n + 1} \subset [0, 1] .

Since f ( 0 ) = f ( 1 ) = 0 f(0) = f(1) = 0 , we have f n + 1 ( 1 ) = 0 f^{n + 1} (1) = 0 for all n 1 n \geq 1 , so 1 A n + 1 1 \in A_{n + 1} .

Now we have

\begin{aligned} |A_{n + 1}| &= |\{x : f(x) \in A_n\}|\\ &= \displaystyle \sum_{a \in A_n} |\{x : f(x) = a\}|\\ &= |\{x : f(x) = 1\}| + \displaystyle \sum_{\substack{a \in A_n \\ a \in [0, 1)}} |\{x : f(x) = a\}|\\ &= 1 + \displaystyle \sum_{\substack{a \in A_n \\ a \in [0, 1)}} 2\\ &= 1 + 2(|A_n| - 1)\\ &= 1 + 2(2^{n - 1} + 1 - 1)\\ &= 2^n + 1. \end{aligned}

Thus the claim holds by induction.

Finally, a 1998 = 0 a_{1998} = 0 if and only if f 1997 ( t ) = 0 f^{1997} (t) = 0 , so there are 2 1996 + 1 2^{1996} + 1 such values of t t . Evaluating this in ( m o d 1000 ) \pmod {1000} , you arrive at an answer of 337 337 .

Use \mathbb to get "blackboard bold". IE \mathbb{R}, \mathbb{C} and \mathbb{N} produce R , C , N \mathbb{R}, \mathbb{C}, \mathbb{N} respectively.

Calvin Lin Staff - 7 years ago

Log in to reply

Thanks! :D

Sharky Kesa - 7 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...