Upstairs Downstairs

Algebra Level 4

Suppose a 1 , a 2 , a 3 a_{1}, a_{2}, a_{3} are the first three terms of an ascending arithmetic progression , and b 1 , b 2 , b 3 b_{1}, b_{2}, b_{3} are the first three terms of a geometric progression . If

(i) a 1 + a 2 + a 3 = 126 a_{1} + a_{2} + a_{3} = 126 ,
(ii) a 1 + b 1 = 85 a_{1} + b_{1} = 85 ,
(iii) a 2 + b 2 = 76 a_{2} + b_{2} = 76 , and
(iv) a 3 + b 3 = 84 a_{3} + b_{3} = 84 ,

are all fulfilled, find a 3 a 1 + b 1 b 3 a_{3} - a_{1} + b_{1} - b_{3} .


The answer is 101.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 24, 2016

It is given that { a 1 + a 2 + a 3 = 126 . . . ( 1 ) a 1 + b 1 = 85 . . . ( 2 ) a 2 + b 2 = 76 . . . ( 3 ) a 3 + b 3 = 84 . . . ( 4 ) \begin{cases} a_1+a_2+a_3 = 126 & ...(1) \\ a_1+b_1 = 85 & ...(2) \\ a_2+b_2 = 76 & ...(3) \\ a_3+b_3 = 84 & ...(4) \end{cases}

( 1 ) : a 1 + a 2 + a 3 = 126 For AP: a 1 + a 3 = 2 a 2 3 a 2 = 126 a 2 = 42 ( 3 ) : a 2 + b 2 = 76 b 2 = 34 ( 2 ) + ( 3 ) + ( 4 ) : a 1 + a 2 + a 3 + b 1 + b 2 + b 3 = 85 + 76 + 84 126 + b 1 + b 2 + b 3 = 245 b 1 + b 2 + b 3 = 119 Let the common ratio of the GP be r b 2 ( 1 r + 1 + r ) = 119 34 ( 1 r + 1 + r ) = 119 2 r 2 5 r + 2 = 0 ( 2 r 1 ) ( r 2 ) = 0 \begin{aligned} (1): \quad a_1+a_2+a_3 & = 126 \quad \quad \small \color{#3D99F6}{\text{For AP: } a_1+a_3 = 2 a_2} \\ \Rightarrow 3 a_2 & = 126 \\ a_2 & = 42 \\ (3): \quad a_2+b_2 & = 76 \\ \Rightarrow b_2 & = 34 \\ (2)+(3)+(4): \quad a_1+a_2+a_3 + b_1+b_2+b_3 & = 85+76+84 \\ 126 + b_1+b_2+b_3 & = 245 \\ b_1+b_2+b_3 & = 119 \quad \quad \small \color{#3D99F6}{\text{Let the common ratio of the GP be }r} \\ b_2 \left( \frac{1}{r} + 1 + r\right) & = 119 \\ 34 \left( \frac{1}{r} + 1 + r\right) & = 119 \\ 2r^2 - 5r + 2 & = 0 \\ \Rightarrow (2r-1) (r-2) & = 0 \end{aligned}

For a 1 < a 2 < a 3 a_1<a_2<a_3 and comparing a 1 + b 1 = 85 a_1+b_1 = 85 and a 3 + b 3 = 84 a_3+b_3 = 84 , we note that b 1 > b 2 > b 3 b_1 > b_2 > b_3 . So, r = 1 2 r=\frac{1}{2} and:

{ b 1 = b 2 r = 68 b 3 = r b 2 = 17 { a 1 + b 1 = 85 a 1 = 17 a 3 + b 3 = 84 a 3 = 67 a 3 a 1 + b 1 b 3 = 101 \begin{cases} b_1 = \dfrac{b_2}{r} = 68 \\ b_3 = r b_2 = 17 \end{cases} \quad \Rightarrow \begin{cases} a_1+b_1 = 85 & \Rightarrow a_1 = 17 \\ a_3+b_3 = 84 & \Rightarrow a_3 = 67 \end{cases} \quad \Rightarrow a_3-a_1+b_1-b_3 = \boxed{101}

Let a 1 = a d , a 2 = a a_{1} = a - d, a_{2} = a and a 3 = a + d a_{3} = a + d . Then from condition (i) we have that 3 a = 126 a = 42. 3a = 126 \Longrightarrow a = 42.

Now let b 1 = b , b 2 = b r b_{1} = b, b_{2} = br and b 3 = b r 2 b_{3} = br^{2} . Then from condition (ii) we have that

a d + b = 85 b d = 85 42 = 43 a - d + b = 85 \Longrightarrow b - d = 85 - 42 = 43 ,

and from condition (iv) we have that a + d + b r 2 = 84 b r 2 + d = 42. a + d + br^{2} = 84 \Longrightarrow br^{2} + d = 42.

Adding these two results gives us that b + b r 2 = 85 b = 85 1 + r 2 b + br^{2} = 85 \Longrightarrow b = \dfrac{85}{1 + r^{2}} .

Next, condition (iii) gives us that

a 2 + b 2 = 76 a + b r = 42 + b r = 76 b = 34 r . a_{2} + b_{2} = 76 \Longrightarrow a + br = 42 + br = 76 \Longrightarrow b = \dfrac{34}{r}.

Equating these expressions for b b yields that

34 r = 85 1 + r 2 34 + 34 r 2 = 85 r 2 r 2 5 r + 2 = ( 2 r 1 ) ( r 2 ) = 0 \dfrac{34}{r} = \dfrac{85}{1 + r^{2}} \Longrightarrow 34 + 34r^{2} = 85r \Longrightarrow 2r^{2} - 5r + 2 = (2r - 1)(r - 2) = 0 ,

and so either r = 1 2 r = \dfrac{1}{2} or r = 2 r = 2 . If r = 1 2 r = \dfrac{1}{2} then b = 34 r = 68 b = \dfrac{34}{r} = 68 and so d = 25 d = 25 , i.e., an ascending arithmetic progression. If r = 2 r = 2 then b = 17 b = 17 and d = 26 d = -26 , i.e., a descending arithmetic progression. Thus r = 1 2 , d = 25 , a = 42 r = \dfrac{1}{2}, d = 25, a = 42 and b = 68 b = 68 , giving us

( a 1 , a 2 , a 3 ) = ( 17 , 42 , 67 ) (a_{1}, a_{2}, a_{3}) = (17, 42, 67) and ( b 1 , b 2 , b 3 ) = ( 68 , 34 , 17 ) (b_{1}, b_{2}, b_{3}) = (68, 34, 17) , and so

a 3 a 1 + b 1 b 3 = 67 17 + 68 17 = 101 a_{3} - a_{1} + b_{1} - b_{3} = 67 - 17 + 68 - 17 = \boxed{101} .

Exact same way (Pure algebra and nothing else)....... (+1)

Rishabh Jain - 5 years, 2 months ago

Log in to reply

Sorry again for the confusion, but thanks for catching my mistake so quickly. :)

Brian Charlesworth - 5 years, 2 months ago

Log in to reply

No problem... :-)

Rishabh Jain - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...