Ur choice. Use either induction or congruences......

Find the remainder when 3 2002 3^{2002} + 7 2002 7^{2002} + 2002 2002 is divided by 29 29 .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Gustav Lenart
Mar 17, 2020

What we are essentially solving is the equation: 3 2002 + 7 2002 + 2002 u ( m o d 29 ) 3^{2002} + 7^{2002} + 2002 \equiv u \pmod{29} so that u u is as small as possible and still a natural number. One can attack each term separately.

  • 2002 = 29 60 + 1 2002 = 29*60 + 1 \Rightarrow 2002 1 ( m o d 29 ) 2002 \equiv 1 \pmod{29}

  • 3 2002 = 9 1001 = 8 1 500 9 3^{2002}\ = 9^{1001} = 81^{500}*9 , notice that 81 23 ( m o d 29 ) 81 \equiv 23 \pmod{29} and therefore 8 1 500 9 2 3 500 9 ( m o d 29 ) 81^{500}*9 \equiv 23^{500}*9 \pmod{29}

  • With the same principle as above: 7 2002 = 4 9 1001 , 49 20 ( m o d 29 ) 4 9 1001 2 0 1001 ( m o d 29 ) 7^{2002} = 49^{1001}, 49 \equiv 20 \pmod{29} \Rightarrow 49^{1001} \equiv 20^{1001} \pmod{29} . Now notice that 2 0 1001 = 40 0 500 20 , 400 23 ( m o d 29 ) 40 0 500 20 2 3 500 20 ( m o d 29 ) 20^{1001} = 400^{500}*20, 400 \equiv 23 \pmod{29} \Rightarrow 400^{500}*20 \equiv 23^{500}*20 \pmod{29}

Substituting each term with its equivalent in Z 29 \Zeta_{29} we get:

3 2002 + 7 2002 + 2002 u ( m o d 29 ) 2 3 500 9 + 2 3 500 20 + 1 u ( m o d 29 ) 2 3 500 ( 9 + 20 ) + 1 u ( m o d 29 ) 2 3 500 ( 29 ) + 1 u ( m o d 29 ) 3^{2002} + 7^{2002} + 2002 \equiv u \pmod{29} \leftrightarrow \\ 23^{500}*9 + 23^{500}*20 + 1 \equiv u \pmod{29} \leftrightarrow \\ 23^{500}(9 + 20) + 1 \equiv u \pmod{29} \leftrightarrow \\ 23^{500}(29) + 1 \equiv u \pmod{29}

As the leftmost term is multiple of 29 the remainder is the right term. Therefore u u and the answer is 1 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...